Rap2A, Rap2B, and Rap2C are Ras-like small G proteins. The role of their post-translational processing has not been investigated due to the lack of information on their downstream signaling. We have recently identified the Traf2- and Nck-interacting kinase (TNIK), a member of the STE20 group of mitogen-activated protein kinase kinase kinase kinases, as a specific Rap2 effector. Here we report that, in HEK293T cells, Rap2A (farnesylated) and Rap2C (likely farnesylated), but not Rap2B (geranylgeranylated), require palmitoylation for membrane-association and TNIK activation, whereas all Rap2 proteins, including Rap2B, require palmitoylation for induction of TNIK-mediated phenotype, the suppression of cell spreading. Furthermore, we report for the first time that, in COS-1 cells, Rap2 proteins localize, and recruit TNIK, to the recycling endosomes, but not the Golgi nor the endoplasmic reticulum, in a palmitoylation-dependent manner. These observations implicate the involvement of palmitoylation and recycling endosome localization in cellular functions of Rap2 proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2008.11.107DOI Listing

Publication Analysis

Top Keywords

rap2 proteins
12
palmitoylation recycling
8
recycling endosome
8
endosome localization
8
kinase kinase
8
require palmitoylation
8
rap2
5
rap2 function
4
function requires
4
palmitoylation
4

Similar Publications

RAP-2 and CNH-MAP4 Kinase MIG-15 confer resistance in bystander epithelium to cell-fate transformation by excess Ras or Notch activity.

Proc Natl Acad Sci U S A

January 2025

Department of Translational Medical Sciences, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030.

Induction of cell fates by growth factors impacts many facets of developmental biology and disease. LIN-3/EGF induces the equipotent vulval precursor cells (VPCs) in to assume the 3˚-3˚-2˚-1˚-2˚-3˚ pattern of cell fates. 1˚ and 2˚ cells become specialized epithelia and undergo stereotyped series of cell divisions to form the vulva.

View Article and Find Full Text PDF

Plants exhibit diverse pathways to regulate the timing of flowering. Some plant species require a vegetative phase before being able to perceive cold stimuli for the acceleration of flowering through vernalization. This research confirms the correlation between the vernalization process and seedling age in Welsh onions.

View Article and Find Full Text PDF

Kiwifruit spatiotemporal multiomics networks uncover key tissue-specific regulatory processes throughout the life cycle.

Plant Physiol

December 2024

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China.

Kiwifruit (Actinidia chinensis), a recently commercialized horticultural crop, is rich in various nutrient compounds. However, the regulatory networks controlling the dynamic changes in key metabolites among different tissues remain largely unknown. Here, high-resolution spatiotemporal datasets obtained by ultraperformance liquid chromatography-tandem mass spectrometry methodology and RNA-seq were employed to investigate the dynamic changes in the metabolic and transcriptional landscape of major kiwifruit tissues across different developmental stages, including from fruit skin, outer pericarp, inner pericarp, and fruit core.

View Article and Find Full Text PDF

Introduction: Banded sheath blight (Bsb) disease, caused by , is an emerging problem in barnyard millet cultivation. One of the significant goals of pathogenomic research is to identify genes responsible for pathogenicity in the fungus.

Methods: A virulence profiling-based approach was employed and six isolates were collected from various ecological zones of India.

View Article and Find Full Text PDF

The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!