Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have previously shown that laboratory populations of the olive fruitfly Bactrocera oleae come to equilibrium with allele frequencies at the 6-phosphogluconate dehydrogenase (6-PGD) locus markedly different from those of wild populations. In this study, we present new evidence from perturbation experiments in support of the notion that the locus is under selective pressure under laboratory conditions. Eleven populations were started with frequencies at the 6-PGD locus different from the laboratory equilibrium. Over 12 generations, the populations showed a return to the previous equilibrium, indicating a direct and powerful selection pressure on the naturally occurring allozymes of this locus. That is, a marked increase of the F allele followed by a compensatory decrease of allele I. Populations were set up to minimize the effects of associative overdominance, and we discuss the possible influence of this factor. Nucleotide sequence for the 6-PGD F and I alleles revealed two missense mutations at positions 501 and 730 leading to different amino acids among the two alleles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0016672308009774 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!