Background: In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis.
Results: We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase.
Conclusion: The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria -- but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648990 | PMC |
http://dx.doi.org/10.1186/1471-2164-9-590 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!