Infrared multiple photon dissociation (IRMPD) spectroscopy combined with theoretical vibrational spectra provides a powerful tool for probing structure. This technique has been used to probe the structure of protonated cyclic AG and the b(2)(+) ion from AGG. The experimental spectrum for protonated cyclo AG compares very well with the theoretical spectra for a diketopiperazine. The spectrum corresponds best to a combination of two structures protonation at the alanine and glycine amide oxygens. The experimental spectrum for the b(2)(+) ion from protonated AGG matches best to the theoretical spectrum for an oxazolone structure protonated on the ring nitrogen. In particular, the carbonyl stretching band at 1970 cm(-1) is blue-shifted by approximately 200 cm(-1) compared to the experimental spectrum for protonated cAG, indicating that these two structures are distinct. This is the first time that an IRPD spectrum of a b(2)(+) ion has been obtained and, for this ion, the oxazolone structure proposed based on prior calculations and experiments is confirmed by the spectroscopic method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654176PMC
http://dx.doi.org/10.1021/ja8067929DOI Listing

Publication Analysis

Top Keywords

b2+ ion
16
experimental spectrum
12
irmpd spectroscopy
8
structure protonated
8
spectrum protonated
8
spectrum b2+
8
oxazolone structure
8
spectrum
6
ion
5
protonated
5

Similar Publications

Development and validation of a UPLC-MS/MS method for simultaneous quantification of polymyxins and caspofungin in human plasma for therapeutic drug monitoring.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

School of Pharmacy, Lanzhou University, Lanzhou 730030 China; Department of Pharmacy, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030 China. Electronic address:

Objective: To develop a rapid, convenient, accurate, and low-residual-effect ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of polymyxin B sulfate and colistin sulfate in the blood of patients with multidrug-resistant bacterial infections, as well as caspofungin acetate in the blood of patients with fungal infections, thus facilitating the rational use of antibiotics in clinical applications.

Methods: All analytes were diluted with 0.2 % aqueous formic acid, and plasma proteins were precipitated using acetonitrile.

View Article and Find Full Text PDF

Functionally Graded Oxide Scale on (Hf,Zr,Ti)B Coating with Exceptional Ablation Resistance Induced by Unique Ti Dissolving.

Adv Sci (Weinh)

January 2025

Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.

Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.

View Article and Find Full Text PDF

The search for new anode materials with high lithium-ion battery (LIB) capacity has attracted considerable attention due to the increasing need for electrical power. Here, we utilized first-principles calculations to develop a honeycomb-structured BCN monolayer, which exhibits an ultra-high Li-ion storage capacity of 2244 mA h g as an anode material for LIBs. Furthermore, the calculations show that the BCN monolayer has a comparatively small diffusion barrier of 0.

View Article and Find Full Text PDF

Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation.

View Article and Find Full Text PDF

Synthesis of nickel-boron/reduced graphene oxide for efficient and stable lithium-ion storage.

Heliyon

December 2024

Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.

Electrode material capacities and cycle performances must improve for large-scale applications such as energy storage systems. Numerous investigations have developed cathode materials to improve lithium-ion batteries (LIBs) performance: however, few have examined new anode materials. In this study, we synthesized a Ni-B/reduced graphene oxide (RGO) composites via a simple chemical reaction method to enhance the stability of electrodes in LIBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!