Two modeling experiments based on the maximum likelihood estimation paradigm and targeting prediction of the Daphnia magna 48-h LC50 acute toxicity endpoint for both organic and inorganic compounds are reported. The resulting models computational algorithms are implemented as basic probabilistic neural networks with Gaussian kernel (statistical corrections included). The first experiment uses strictly D. magna information for 971 structures as training/learning data and the resulting model targets practical applications. The second experiment uses the same training/learning information plus additional data on another 29 compounds whose endpoint information is originating from D. pulex and Ceriodaphnia dubia. It only targets investigation of the effect of mixing strictly D. magna 48-h LC50 modeling information with small amounts of similar information estimated from related species, and this is done as part of the validation process. A complementary 81 compounds dataset (involving only strictly D. magna information) is used to perform external testing. On this external test set, the Gaussian character of the distribution of the residuals is confirmed for both models. This allows the use of traditional statistical methodology to implement computation of confidence intervals for the unknown measured values based on the models predictions. Examples are provided for the model targeting practical applications. For the same model, a comparison with other existing models targeting the same endpoint is performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10629360802550556 | DOI Listing |
Insects
December 2024
Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China.
The greater wax moth (GWM, ) is a prevalent pest of the honeybee and a significant risk to both honeybee populations and honeycomb storage. Research on the toxicity of essential oils (EOs) to GWM larvae has provided promising results, although their ovicidal effects and active ingredients require further study. Identifying effective plant compounds is essential for developing insecticides for GWM control.
View Article and Find Full Text PDFExp Appl Acarol
December 2024
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
Two-spotted spider mite (TSSM), Tetranychus urticae Koch is a devastating polyphagous mite causing considerable economic loss. Acaricides are showered in crops to manage this pest. The pest is known for developing resistance to several classical acaricides.
View Article and Find Full Text PDFTransgenic Res
December 2024
The Sericultural Research Institute of Hunan Province, Changsha, 410127, Hunan, China.
Bombyx mori nuclear polyhedrosis, caused by B. mori nucleopolyhedrovirus (BmNPV), threatens sericulture seriously. To explore strategies for controlling it, the UDP glycosyltransferase gene UGT41A3 (BmUGT41A3) was targeted.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
Plant-parasitic nematodes pose a significant threat to crop production, impacting agricultural yields. In the search for new nematicides, a series of 1,2,4-oxadiazole-5-carboxylic acid derivatives containing amide or ester groups were designed and synthesized using an activity-based approach. Bioassay results showed that some compounds exhibited good nematicidal activity against , , and .
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, Québec, Canada. Electronic address:
The Hydra vulgaris bioassay is recognized as sensitive invertebrate test species for toxicity assessment of real-life environmental mixtures for enforcement and monitoring investigations. The purpose of this study was to characterize the intra-laboratory variability, study the influence of environmental variables (temperature, luminosity, inter-individual and day of analysis) on ZnSO toxicity, a reference model toxicant for hydra. The sublethal (effect concentration for 50 % of hydra-EC50) and lethal (lethal concentration for 50 % of hydra-LC50) were determined based on characteristic morphological changes for this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!