To investigate the importance of proteolysis of NF-kappaB1 p105 induced by the kinase IKK in activation of the transcription factor NF-kappaB, we generated 'Nfkb1(SSAA/SSAA)' mice, in which the IKK-target serine residues of p105 were substituted with alanine. Nfkb1(SSAA/SSAA) mice had far fewer CD4+ regulatory and memory T cells because of cell-autonomous defects. These T cell subtypes require activation of NF-kappaB by the T cell antigen receptor for their generation, and the Nfkb1(SSAA) mutation resulted in less activation of NF-kappaB in CD4+ T cells and proliferation of CD4+ T cells after stimulation of the T cell antigen receptor. The Nfkb1(SSAA) mutation also blocked the ability of CD4+ T cells to provide help to wild-type B cells during a primary antibody response. IKK-induced p105 proteolysis is therefore essential for optimal T cell antigen receptor-induced activation of NF-kappaB and mature CD4+ T cell function.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni.1685DOI Listing

Publication Analysis

Top Keywords

cell antigen
16
activation nf-kappab
12
cd4+ cells
12
proteolysis nf-kappab1
8
nf-kappab1 p105
8
antigen receptor-induced
8
antigen receptor
8
nfkb1ssaa mutation
8
cell
6
cd4+
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!