To investigate the importance of proteolysis of NF-kappaB1 p105 induced by the kinase IKK in activation of the transcription factor NF-kappaB, we generated 'Nfkb1(SSAA/SSAA)' mice, in which the IKK-target serine residues of p105 were substituted with alanine. Nfkb1(SSAA/SSAA) mice had far fewer CD4+ regulatory and memory T cells because of cell-autonomous defects. These T cell subtypes require activation of NF-kappaB by the T cell antigen receptor for their generation, and the Nfkb1(SSAA) mutation resulted in less activation of NF-kappaB in CD4+ T cells and proliferation of CD4+ T cells after stimulation of the T cell antigen receptor. The Nfkb1(SSAA) mutation also blocked the ability of CD4+ T cells to provide help to wild-type B cells during a primary antibody response. IKK-induced p105 proteolysis is therefore essential for optimal T cell antigen receptor-induced activation of NF-kappaB and mature CD4+ T cell function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ni.1685 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!