Cardiac remodeling is thought to be the major cause of chronic heart dysfunction after myocardial infarction (MI). However, molecules involved in this process have not been thoroughly elucidated. In this study we investigated the long-term effects of the growth factor midkine (MK) in cardiac remodeling after MI. MI was produced by ligation of the left coronary artery. MK expression was progressively increased after MI in wild-type mice, and MK-deficient mice showed a higher mortality. Exogenous MK improved survival and ameliorated left ventricular dysfunction and fibrosis not only of MK-deficient mice but also of wild-type mice. Angiogenesis in the peri-infarct zone was also enhanced. These in vivo changes induced by exogenous MK were associated with the activation of phosphatidylinositol 3-kinase (PI3K)/Akt and MAPKs (ERK, p38) and the expression of syndecans in the left ventricular tissue. In vitro experiments using human umbilical vein endothelial cells confirmed the potent angiogenic action of MK via the PI3K/Akt pathway. These results suggest that MK prevents the cardiac remodeling after MI and improves the survival most likely through an enhancement of angiogenesis. MK application could be a new therapeutic strategy for the treatment of ischemic heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00733.2008 | DOI Listing |
Nat Cardiovasc Res
January 2025
Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China; and
The purpose of this study was to investigate the feasibility of using F-labeled fibroblast activation protein inhibitor (FAPI) PET/CT in assessing the fibrotic remodeling of the pulmonary artery (PA) and the right ventricle (RV) in pulmonary arterial hypertension (PAH). In a rat model of monocrotaline-induced PAH, rats were euthanized at different time points for tissue analysis (fibroblast activation protein immunofluorescence and Masson's trichrome staining) after completing F-FAPI PET/CT and hemodynamic measurements. Thirty-eight PAH patients were enrolled to participate in F-FAPI PET/CT imaging, with right heart catheterization and echocardiography performed within 1 wk to assess pulmonary hemodynamics and cardiac function.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cardiac Surgery, Peking University Third Hospital, Beijing 100191, China.
Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.
View Article and Find Full Text PDFAllergy
January 2025
Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK.
Background: Airway remodelling is a feature of severe asthma with airway epithelial damage observed frequently. We evaluated the role of WNT5a and TGF-β in asthmatic airway biopsies and in sputum and bronchial brushings assessed their role in remodelling.
Methods: WNT5a and TGF-β protein expression were assessed in the lamina propria epithelium of people with asthma (GINA 1-3, n-8 and GINA 4-5, n-14) and healthy subjects (n-9), alongside relevant remodelling markers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!