Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis.

Plant Cell

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, An Arbor, Michigan 48109-1048, USA.

Published: December 2008

Endoplasmic reticulum-mediated quality control (ERQC) is a well-studied process in yeast and mammals that retains and disposes misfolded/unassembled polypeptides. By contrast, how plants exert quality control over their secretory proteins is less clear. Here, we report that a mutated brassinosteroid receptor, bri1-5, that carries a Cys69Tyr mutation, is retained in the ER by an overvigilant ERQC system involving three different retention mechanisms. We demonstrate that bri1-5 interacts with two ER chaperones, calnexin and binding protein (BiP), and is degraded by a proteasome-independent endoplasmic reticulum-associated degradation (ERAD). Mutations in components of the calnexin/calreticulin cycle had little effect on the fidelity of the Arabidopsis thaliana ERQC for bri1-5 retention. By contrast, overexpression of bri1-5, treatment with an ERAD inhibitor, RNA interference-mediated BiP silencing, or simultaneous mutations of Cys-69 and its partner Cys-62 can mitigate this quality control, resulting in significant suppression of the bri1-5 phenotype. Thus, bri1-5 is an excellent model protein to investigate plant ERQC/ERAD in a model organism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630446PMC
http://dx.doi.org/10.1105/tpc.108.061879DOI Listing

Publication Analysis

Top Keywords

quality control
12
brassinosteroid receptor
8
bri1-5
6
multiple mechanism-mediated
4
mechanism-mediated retention
4
retention defective
4
defective brassinosteroid
4
receptor endoplasmic
4
endoplasmic reticulum
4
reticulum arabidopsis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!