A Gram-positive, small coccus-shaped lactic acid bacterium, strain LMG 23999(T), was isolated from Argentinean wheat flour. 16S rRNA gene sequence analysis revealed that the phylogenetic position of the novel strain was within the genus Pediococcus, with Pediococcus stilesii, Pediococcus pentosaceus and Pediococcus acidilactici as its closest relatives (97.7, 97.3 and 96.9 % gene sequence similarity, respectively). Fluorescent amplified fragment length polymorphism fingerprinting of whole genomes and whole-cell protein electrophoresis confirmed the unique taxonomic status of the novel strain. DNA-DNA hybridizations, DNA G+C content determination, comparative sequence analysis of the pheS, rpoA and atpA genes and physiological and biochemical characterization demonstrated that strain LMG 23999(T) (=CCUG 54535(T)=CRL 776(T)) represents a novel species for which the name Pediococcus argentinicus sp. nov. is proposed. Multi-locus sequence analysis based on pheS, rpoA and atpA genes was found to be a suitable method for the identification of species of the genus Pediococcus.

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijs.0.65833-0DOI Listing

Publication Analysis

Top Keywords

sequence analysis
16
phes rpoa
12
rpoa atpa
12
pediococcus
8
pediococcus argentinicus
8
argentinicus nov
8
wheat flour
8
strain lmg
8
lmg 23999t
8
gene sequence
8

Similar Publications

Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.

J Clin Invest

January 2025

Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.

Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.

View Article and Find Full Text PDF

Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis.

View Article and Find Full Text PDF

Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots.

View Article and Find Full Text PDF

Diabetes is a critical worldwide health problem. Numerous studies have focused on producing recombinant human insulin to address this issue. In this research, the process factors of production of recombinant His-tagged proinsulin in E.

View Article and Find Full Text PDF

Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq.

Theor Appl Genet

January 2025

College of Agriculture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, China.

QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!