While there is evidence that human perinatal exposure to environmental tobacco smoke (ETS) can result in an increased risk of respiratory disorders and sudden infant death syndrome, evidence linking ETS exposure to neurodevelopmental handicaps is suggestive but less compelling. We previously noted that postnatal ETS exposure, rather than prenatal exposure, resulted in reduced concentration of hindbrain DNA and increased protein/DNA ratio when rat brain tissue was studied at 9 weeks postnatal age. We have now evaluated the effects of ETS exposure during pregnancy on brain development by assaying brain tissue at term. ETS exposure had no detectable effects on regional brain concentrations of DNA, protein and cholesterol or on protein/DNA and cholesterol/DNA ratios. While ETS exposure during pregnancy also had no detectable effects on the weights of the individual fetuses or on the weights of various organs, certain regions of the fetal skeleton demonstrated accelerated ossification. The findings of this study are contrasted to the developmental effects of both nicotine and ETS in Rhesus macaques. Additional studies designed specifically to assess the risk of prenatal ETS exposure on brain development in non-human primates and other precocial species are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2008.11.049DOI Listing

Publication Analysis

Top Keywords

ets exposure
24
exposure
10
exposure environmental
8
environmental tobacco
8
tobacco smoke
8
ets
8
brain tissue
8
exposure pregnancy
8
brain development
8
detectable effects
8

Similar Publications

Background: Air pollution is associated with poor asthma outcomes in children. However, most studies focus on ambient or indoor monitor pollution levels. Few studies evaluate breathing zone exposures, which may be more consequential for asthma outcomes.

View Article and Find Full Text PDF

The use of genetically diverse mouse models offers a more accurate reflection of human genetic variability, improving the translatability of findings to heterogeneous human populations. This approach is particularly valuable in understanding diverse immune responses to disease by environmental exposures. This study investigates the inflammatory responses to acute exposures to mainstream cigarette smoke (CS) and environmental tobacco smoke (ETS) in two genetically diverse mouse strains, CC002/UncJ (UNC) & Diversity Outbred (J:DO).

View Article and Find Full Text PDF

Ethyltoluenes Regulate Inflammatory and Cell Fibrosis Signaling in the Liver Cell Model.

Toxics

November 2024

The Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University (NCCU), Durham, NC 27707, USA.

Crude oil naphtha fraction C9 alkylbenzenes consist of trimethylbenzenes, ethyltoluenes, cumene, and n-propylbenzene. The major fraction of C9 alkylbenzenes is ethyltoluenes (ETs) consisting of three isomers: 2-ethyltoluene (2-ET), 3-ethyltoluene (3-ET), and 4-ethyltoluene (4-ET). Occupational and environmental exposure to ETs can occur via inhalation and ingestion and cause several health problems.

View Article and Find Full Text PDF

Garlic ( L.) is a species of the onion family () widely used as a food and a folk medicine. The objective of this study was to determine the effects of AGE (aged garlic extract) on pro-inflammatory genes relevant to COVID-19.

View Article and Find Full Text PDF

This literature review investigates the application of wide dynamic range compression (WDRC) to enhance hearing protection and communication among workers in a noisy environment. Given the prevalence of noise-induced hearing loss, there is a major need to provide workers, with or at risk of hearing loss, with a solution that not only protects their hearing but also facilitates effective communication. WDRC, which amplifies softer sounds while limiting louder sounds, appears a promising approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!