Quantitative methods of analysis of neural circuits rely on large datasets of neurons reconstructed accurately in three dimensions (3D). Due to the complexity of neuronal arbors, large datasets of reconstructed neurons must be generated with automated algorithms. Here, we attempted to automate the process of neuron tracing from sparsely labeled 3D stacks of confocal microscopy images. Our algorithm involves two steps. In the first step, the segmented image of neurites in the stack is voxel-coded. Centers of intensity of consecutively coded wave fronts are connected into a branched structure, which represents a coarse trace of the neurites. In the second step, this trace is optimized with the modified active contour method, which tends to maximize the intensity along the trace while keeping it under tension. To assess the performance of the algorithm we used manual reconstructions of neurons and converted them into artificial stacks of intensity images. These images were traced using the developed algorithm and quantitatively compared to the corresponding manual traces. The optimal traces were on average 6.0% shorter than the manual traces. This reduction in length resulted from the smoothness of the optimal traces, which, in comparison to the manual ones, were built out of shorter segments, and, as a result, were 3.3% less tortuous. The average distance between the optimal and the manual traces was 0.14 microm, and the average distance between their corresponding branch-points was 2.2 microm, illustrating good agreement between the traces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771922 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2008.11.008 | DOI Listing |
An assessment scheme is proposed to evaluate GBM gross tumor core and T2-FLAIR hyper-intensity segmentations on preoperative multicentric MR images as a function of tumor morphology and MRI characteristics. 74 gross tumor core and T2-FLAIR hyper-intensity BraTS-Toolkit and DeepBraTumIA automatic segmentations, and 42 gross tumor core neurosurgeon manual segmentations were accordingly evaluated. Brats-Toolkit and DeepBraTumIA generally provide accurate segmentations, particularly for the most common round-shaped or well-demarked tumors, where: (1) gross tumor segmentation correctly includes necrosis and contrast enhanced tumor in 100% and 97.
View Article and Find Full Text PDFLab Chip
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
In regular biosample cryopreservation operations, dropwise pipetting and continuous swirling are ordinarily needed to prevent cell damage ( sudden osmotic change, toxicity and dissolution heat) caused by the high-concentration cryoprotectant (CPA) addition process. The following CPA removal process after freezing and rewarming also requires multiple sample transfer processes and manual work. In order to optimize the cryopreservation process, especially for trace sample preservation, here we present a microfluidic approach integrating CPA addition, sample storage, CPA removal and sample resuspension processes on a 30 × 30 × 4 mm three-layer chip.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.
View Article and Find Full Text PDFForensic Sci Int
January 2025
Department of Forensic Science and Technology, Sichuan Police College, No. 186, Longtouguan Road, Jiangyang District, Luzhou 646000, China; Sichuan Provincial Key Lab of Intelligent Policing, No. 186, Longtouguan Road, Jiangyang District, Luzhou 646000, China. Electronic address:
The firing pin impression left on the base of a cartridge case is a critical analytical feature in forensic science. To address the limitations of traditional manual trace analysis and mitigate the risk of secondary damage to physical evidence, we employ a line laser displacement sensor to capture and analyze three-dimensional (3D) traces of fired cartridge cases. However, when using laser displacement sensors to collect traces from metal cartridge cases, the high curvature and reflectivity of the metal surface can cause specular reflections, potentially leading to measurement anomalies in the firing pin impressions.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.
The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!