Fluvastatin inhibits mast cell degranulation without changing the cytoplasmic Ca2+ level.

Eur J Pharmacol

Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan.

Published: January 2009

We evaluated the pharmacological effect of statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) on mast cell degranulation in RBL-2H3 cells. A hydrophilic statin (pravastatin) did not inhibit degranulation induced by dinitrophenol-human serum albumin (DNP-HSA); in contrast, lipophilic statins (simvastatin, fluvastatin and atorvastatin) inhibited DNP-HSA-induced degranulation in that order. The inhibitory effects were completely attenuated by simultaneous treatment with 100-1000 microM mevalonic acid for 4 h. We used fluvastatin to clarify the mechanism of the statin-mediated inhibitory action of mast cell degranulation. Fluvastatin (3 microM) had no effect on Ca(2+) release from the endoplasmic reticulum or Ca(2+) influx in the DNP-HSA- or thapsigargin-stimulated cells. Fluvastatin treatment also had no effect on the total granule content of the cell or sensitivity to DNP-HSA and IgE. Fluvastatin (3 microM, 24 h treatment) also failed to affect the morphology, proliferation, and viability of RBL-2H3 cells. Geranylgeranyl transferase inhibitor, GGTI-286 (20 microM), but not farnesyl transferase inhibitor, FPTIII (20 microM), inhibited the DNP-HSA-induced degranulation. The GGTI-286-induced inhibitory action was not associated with a decrease in the cytoplasmic Ca(2+) level. In conclusion, fluvastatin at a lower concentration range inhibited DNP-HSA-induced degranulation without affecting the cytoplasmic Ca(2+) response and also without changing the amount of granule content and proliferation of the mast cells. The statin-induced inhibitory action may be mediated by the suppression of geranylgeranyl transferase via the depletion of intracellular mevalonic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2008.11.040DOI Listing

Publication Analysis

Top Keywords

mast cell
12
cell degranulation
12
cytoplasmic ca2+
12
inhibited dnp-hsa-induced
12
dnp-hsa-induced degranulation
12
inhibitory action
12
ca2+ level
8
rbl-2h3 cells
8
mevalonic acid
8
fluvastatin microm
8

Similar Publications

IgE and cardiac disease.

Acta Physiol (Oxf)

February 2025

Department of Physiology, Pharmacology and Toxicology, West Virginia University, Morgantown, West Virginia, USA.

IgE acts primarily via the high affinity IgE receptor (FcεRI) and is central to immediate hypersensitivity reactions (anaphylaxis). However, IgE is also important in the development of chronic hypersensitivity reactions (allergy). In the cardiovascular system, numerous clinical studies have investigated serum IgE levels, mainly in the context of myocardial infarction, and have established a clear association between IgE and ischemic cardiac events.

View Article and Find Full Text PDF

BackgroundAllergic diseases have become one of the major public health problems to be addressed in the world today. As a tissue resident cell, mast cells are crucial in the pathogenesis of allergic diseases. Vitamin A is an important fat-soluble vitamin with immunomodulatory functions.

View Article and Find Full Text PDF

Immune infiltration plays a significant role in the pathogenesis of rheumatoid arthritis (RA). Cuproptosis, a newly characterized form of programmed cell death, remains insufficiently investigated regarding its genetic regulation of immune infiltration in RA. Data from the GEO database were analyzed to determine the relationship between cuproptosis-related genes and immune infiltration.

View Article and Find Full Text PDF

Update on Mast Cell Biology.

J Allergy Clin Immunol

January 2025

Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA. Electronic address:

Mast cells (MCs) are heterogeneous tissue-resident effector cells thought to play central roles in allergic inflammatory disease, yet the degree of heterogeneity and nature of these roles has remained elusive. In recent years, advances in tissue culture systems, pre-clinical mouse models, and the continued spread of single-cell RNA sequencing has greatly advanced our understanding of MC phenotypes in health and disease. These approaches have identified novel interactions of MC subsets with immune cells, neurons, and tissue structural cells, changing our understanding of how MCs both drive and help resolve tissue inflammation, reshape tissue microenvironments, and influence host behavior.

View Article and Find Full Text PDF

Fibroblast growth factor 21 alleviated atopic march by inhibiting the differentiation of type 2 helper T cells.

Int Immunopharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!