The acid phosphatase Api m 3 is the major allergen of the honeybee venom. Except for the amino acid sequence, no other structural information for the enzyme is available. We applied homology modeling to assign the three-dimensional structure of Api m 3. The structure of the homodimeric human prostatic acid phosphatase was used to model the Api m 3 tertiary structure. IgE epitopes and antigenic sites were predicted using programs based on the structure of known epitopes and analysis of the 3-D model. The model of Api m 3 revealed an active site similar to those of the histidine-type acid phosphatases with conservation of the catalytically important residues. The observed substitutions in the phosphate ion binding site suggest differences in the substrate specificity in comparison to other acid phosphatases. The analysis of the Api m 3 three-dimensional model revealed a very likely mechanism of enzyme action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2008.11.101DOI Listing

Publication Analysis

Top Keywords

acid phosphatase
12
3-d model
8
model api
8
acid phosphatases
8
acid
6
api
5
model bee
4
bee venom
4
venom acid
4
phosphatase insights
4

Similar Publications

Introduction: The grayling ( L.) has several advantages over other fish species that make it attractive for aquaculture and invest it with importance for food security. The study assessed the effects of a β-glucan-enriched diet on biomarkers of oxidative stress, energy metabolism and lysosomal function in muscle tissue of European grayling ( L.

View Article and Find Full Text PDF

Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored.

View Article and Find Full Text PDF

Background And Objectives: Based on the Adverse Event Reporting System (FAERS) data from the US FDA, this study mined the adverse drug reactions of obeticholic acid (OCA) in the real world and provided reference for clinical safe drug use.

Methods: Adverse event reports for OCA from the second quarter of 2016 to the third quarter of 2023 were extracted. The analysis for adverse reaction signal detection was conducted using reporting odds ratio, proportional reporting ratio, Bayesian confidence propagation neural network, and multi-item gamma Poisson shrinker methods.

View Article and Find Full Text PDF

Amplification-free CRISPR/Cas based dual-enzymatic colorimetric nucleic acid biosensing device.

Lab Chip

January 2025

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how bauxite mining impacts soil quality and microbial health in mining-adjacent areas, which has been under-researched compared to other types of mining like coal and copper.
  • Soil samples from locations near an active bauxite mine showed high levels of heavy metals (like chromium and lead), acidity, and aluminum, negatively affecting important microbial indicators such as enzyme activity and microbial biomass.
  • The research found that the concentrations of organic carbon could help mitigate some of the acidity effects, with acid phosphatase enzyme being a key factor in differences seen across various sampling sites.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!