Pharmacogenetics-guided dose modifications of antidepressants.

Clin Lab Med

Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Helmholtzstrasse 20, 89081 Ulm, Germany.

Published: December 2008

The efficacy of a drug therapy is influenced by many different factors, such as age, weight, comorbidity, and comedication, which vary among patients, as do the fixed parameters of sex and genotype. Enzymes involved in drug metabolism are genetically polymorphic, meaning that their activities differ depending on certain genotypes. Drugs are metabolized slowly in individuals carrying a genetic polymorphism that causes absent or decreased enzyme activity, and these individuals are at an increased risk for adverse drug reactions or therapeutic failure. However, drug therapy could be ineffective if the drug is metabolized too quickly because of a genetic polymorphism. Knowledge of these polymorphisms before beginning a drug therapy could help in choosing the right agent at a safe dosage, especially those with a narrow therapeutic index and a high risk for the development of adverse drug effects. Particularly, two polymorphic drug metabolizing enzymes, belonging to the cytochrome P450 (CYP) family, are responsible for the metabolism of many antidepressant drugs: CYP2D6 and CYP2C19. In addition to antidepressive drugs, several drugs used in cancer therapy, beta-blockers, proton pump inhibitors, and opioid analgesics are metabolized by these enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cll.2008.05.006DOI Listing

Publication Analysis

Top Keywords

drug therapy
12
drug
8
genetic polymorphism
8
adverse drug
8
pharmacogenetics-guided dose
4
dose modifications
4
modifications antidepressants
4
antidepressants efficacy
4
efficacy drug
4
therapy
4

Similar Publications

Patient centered medication treatment for opioid use disorder in rural Vermont: a qualitative study.

Addict Sci Clin Pract

January 2025

Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA.

Background: Opioid-related fatal overdoses are occurring at historically high levels and increasing each year. Accessible social and financial support are imperative to the initiation and success of treatment for Opioid Use Disorder (OUD). Medications for Opioid Use Disorder (MOUD) offer effective treatment but there are many more people with untreated OUD than receiving evidence-based medication.

View Article and Find Full Text PDF

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!