A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intervertebral disc cell response to dynamic compression is age and frequency dependent. | LitMetric

Intervertebral disc cell response to dynamic compression is age and frequency dependent.

J Orthop Res

Spine Bioengineering Lab, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, USA.

Published: June 2009

The maintenance of the intervertebral disc extracellular matrix is regulated by mechanical loading, nutrition, and the accumulation of matrix proteins and cytokines that are affected by both aging and degeneration. Evidence suggests that cellular aging may lead to alterations in the quantity and quality of extracellular matrix produced. The aims of this study were to examine the role of loading and maturation (a subset of aging), and the interaction between these two factors in intervertebral disc cell gene expression and biosynthesis in a controlled 3D culture environment. Cells were isolated from young (4-6 months) and mature (18-24 months) bovine caudal annulus fibrosus and nucleus pulposus tissue. Isolated cells were seeded into alginate and dynamically compressed for 7 days at either 0.1, 1, or 3 Hz or maintained as a free-swelling control. After 7 days, DNA and sulfated glycosaminoglycan contents were analyzed along with real time, quantitative reverse transcription-polymerase chain reaction analysis for collagen types I and II, aggrecan, and matrix metalloproteinase-3 gene expression. Results suggest that maturation plays an important role in intervertebral disc homeostasis and influences the cell response to mechanical loading. While isolated intervertebral disc cells responded to mechanical compression in 3D culture, the effect of loading frequency was minimal. Altered cellular phenotype and biosynthesis rates appear to be an attribute of the cell maturation process, potentially independent of changes in cellular microenvironment associated with lost nutrition and disc degeneration. Mature cells may have a decreased capacity to create or retain extracellular matrix components in response to mechanical loading compared to young cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757142PMC
http://dx.doi.org/10.1002/jor.20814DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
20
extracellular matrix
12
mechanical loading
12
disc cell
8
cell response
8
gene expression
8
response mechanical
8
intervertebral
5
disc
5
matrix
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!