Traditional low-molecular weight colorants that are widely applied in textile coloration, for printing purposes and nonlinear optics, now afford bulk heterojunction solar cells in combination with soluble C(60) fullerene derivative PCBM with power conversion efficiencies up to 1.7% under standard solar radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b813341g | DOI Listing |
Small
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
Morphology control plays a key role for improving efficiency and stability of bulk heterojunctions (BHJ) organic solar cells (OSCs). Halogenation and methoxylation are two separate ways successfully adopted in additives for morphology optimization. In this work, these two strategies are combined together.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, No. 189 Songling Road, 266101, Qingdao, CHINA.
Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.
Sci Rep
January 2025
Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!