Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to develop a population model of the pharmacokinetics (PK) of caffeine after orogastric or intravenous administration to extremely premature neonates with apnea of prematurity who were to undergo extubation from ventilation. Infants of gestational age <30 weeks were randomly allocated to receive maintenance caffeine citrate dosing of either 5 or 20 mg/kg/d. Four blood samples were drawn at prerandomized times from each infant during caffeine treatment. Serum caffeine was assayed by enzyme-multiplied immunoassay technique. Concentration data (431 samples, median: 4 per subject) were obtained from 110 (52 male) infants of mean birth weight of 1009 g, current mean weight (WT) of 992 g, mean gestational age of 27.6 weeks, and mean postnatal age (PNA) of 12 days. Of 1022 doses given, 145 were orogastric, permitting estimation of absolute bioavailability. A 1-compartment model with first-order absorption was fitted to the data in NONMEM. Patient characteristics were screened (P < 0.01) in nested models for pharmacokinetic influence. Model stability was assessed by nonparametric bootstrapping. Clearance (CL) increased nonlinearly with increasing PNA, whereas volume of distribution (Vd) increased linearly with WT, according to the following allometric models: CL (L/h) = 0.167 (WT/70) (PNA/12); Vd (L) = 58.7 (WT/70). The mean elimination half-life was 101. Interindividual variability (IIV) of CL and Vd was 18.8 % and 22.3 %, respectively. Interoccasion variability (IOV) of CL and Vd was 35.1% and 11.1%, respectively. This study established that the elimination of caffeine was severely depressed in extremely premature infants but increased nonlinearly after birth up to age 6 weeks. Caffeine was completely absorbed, which has favorable implications for switching between intravenous and orogastric routes. The interoccasion variability about CL was twice the interindividual variability, which, among other factors, indicates that routine serum concentration monitoring of caffeine in these patients is not warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FTD.0b013e3181898b6f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!