von Willebrand factor (vWF) is a multimeric glycoprotein that supports platelet adhesion on thrombogenic surfaces as part of the normal hemostatic response to vascular injury. We have employed a domain-specific expression strategy to analyze the biosynthetic processing steps and minimum structural requirements for assembly of the platelet receptor glycoprotein Ib-binding domain of vWF. A chimeric cDNA that codes for the vWF signal peptide and a segment of vWF internal primary sequence, residues 441-730, directs the secretion of a functional vWF fragment from mammalian cells. The recombinant molecule intrinsically assembles through intermolecular disulfide bond formation into a dimeric adhesive domain without contributions from other regions of vWF, including propeptide, previously indicated as essential for vWF multimer assembly. Prevention of N-linked glycosylation on the recombinant domain does not impair dimer formation or the ability to support platelet aggregation. These results identify a minimum structural element for vWF subunit assembly and provide new insights into the processing steps to produce vWF multimers and adhesive domains.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vwf
9
dimeric adhesive
8
adhesive domain
8
von willebrand
8
willebrand factor
8
glycoprotein ib-binding
8
processing steps
8
minimum structural
8
independent assembly
4
assembly secretion
4

Similar Publications

Multimodal learning for mapping genotype-phenotype dynamics.

Nat Comput Sci

January 2025

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

How complex phenotypes emerge from intricate gene expression patterns is a fundamental question in biology. Integrating high-content genotyping approaches such as single-cell RNA sequencing and advanced learning methods such as language models offers an opportunity for dissecting this complex relationship. Here we present a computational integrated genetics framework designed to analyze and interpret the high-dimensional landscape of genotypes and their associated phenotypes simultaneously.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

The future of siRNA-mediated approaches to treat von Willebrand disease.

Expert Rev Hematol

January 2025

Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.

Introduction: The clinical management of the inherited bleeding disorder von Willebrand disease (VWD) focuses on normalizing circulating levels of von Willebrand factor (VWF) and factor VIII (FVIII) to prevent or control bleeding events. The heterogeneous nature of VWD, however, complicates effective disease management and development of universal treatment guidelines.

Areas Covered: The current treatment modalities of VWD and their limitations are described and why this prompts the development of new treatment approaches.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Article Synopsis
  • Diabetic wounds suffer from complications due to poor blood flow linked to vascular issues.
  • Previous attempts to use VEGF therapy to enhance healing haven't shown effective results, partly due to low levels of the enzyme phospholipase Cγ2 (PLCγ2).
  • By utilizing advanced gene-targeting techniques, specifically CRISPR/dCas9, researchers were able to demethylate the PLCγ2 gene in blood vessels, improving the effects of VEGF therapy and significantly enhancing blood flow and wound healing in diabetic patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!