AI Article Synopsis

Article Abstract

Insulin secretion from pancreatic beta cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1alpha, a transcription factor implicated in promoting a glycolytic form of metabolism. Here we report a central role for the pVHL-HIF1alpha pathway in the control of beta-cell glucose utilization, insulin secretion, and glucose homeostasis. Conditional inactivation of Vhlh in beta cells promoted a diversion of glucose away from mitochondria into lactate production, causing cells to produce high levels of glycolytically derived ATP and to secrete elevated levels of insulin at low glucose concentrations. Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca(2+) concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance. Importantly, combined deletion of Vhlh and Hif1alpha rescued these phenotypes, implying that they are the result of HIF1alpha activation. Together, these results identify pVHL and HIF1alpha as key regulators of insulin secretion from pancreatic beta cells. They further suggest that changes in the metabolic strategy of glucose metabolism in beta cells have profound effects on whole-body glucose homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593613PMC
http://dx.doi.org/10.1101/gad.496908DOI Listing

Publication Analysis

Top Keywords

insulin secretion
24
beta cells
20
glucose metabolism
12
secretion pancreatic
12
pancreatic beta
12
glucose
10
glucose homeostasis
8
insulin
7
secretion
6
cells
6

Similar Publications

(1) Background: It has been reported that people affected by COVID-19, an infectious disease caused by SARS-CoV-2, suffer from various diseases, after infection. One of the most serious problems is the increased risk of developing diabetes after COVID-19 infection. However, a treatment for post-COVID-19 infection diabetes has not yet been established.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.

View Article and Find Full Text PDF

Polyphenolic Compounds in Fabaceous Plants with Antidiabetic Potential.

Pharmaceuticals (Basel)

January 2025

Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico.

Diabetes mellitus (DM) is a chronic non-communicable disease with an increasing prevalence in Latin America and worldwide, impacting various social and economic areas. It causes numerous complications for those affected. Current treatments for diabetes include oral hypoglycemic drugs, which can lead to adverse effects and health complications.

View Article and Find Full Text PDF

Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) have emerged as extraordinary bioactive lipids, exhibiting diverse bioactivities, from the enhancement of insulin secretion and the optimization of blood glucose absorption to anti-inflammatory effects. The intricate nature of FAHFAs' structure reflects a synthetic challenge that requires the strategic introduction of ester bonds along the hydroxy fatty acid chain. Our research seeks to create an effective methodology for generating varied FAHFA derivatives.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!