Recent studies demonstrate that activation of Ca(2+)-permeable N-methyl-D-aspartate (NMDA) receptors upregulates phosphorylation of mitogen-activated protein kinases (MAPKs) in heterologous cells and neurons. In cultured rat striatal neurons, the present work systematically evaluated the role of a number of protein kinases in forming a signaling cascade transducing NMDA receptor signals to MAPKs. It was found that a brief NMDA application consistently induced rapid and transient phosphorylation of the extracellular signal-regulated kinase 1/2 (ERK1/2), a best characterized subclass of MAPKs. This ERK1/2 phosphorylation was resistant to the inhibition of protein kinase C, p38 MAPK, cyclin-dependent kinase 5, receptor tyrosine kinase (epidermal growth factor receptors), or non-receptor tyrosine kinases (including Src) by their selective inhibitors. However, the increase in ERK1/2 phosphorylation was partially blocked by a protein kinase A (PKA) inhibitor. The inhibitors for Ca(2+)/calmodulin-dependent protein kinase (CaMK) or phosphatidylinositol 3-kinase (PI3-kinase) completely blocked the NMDA-stimulated ERK1/2 phosphorylation. In an attempt to characterize the sequential role of CaMK and PI3-kinase, we found that NMDA increased PI3-kinase phosphorylation on Tyr(508), which kinetically corresponded to the ERK1/2 phosphorylation and was blocked by the CaMK inhibitor. These results indicate that the protein kinases are differentially involved in linking NMDA receptors to ERK1/2 in striatal neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736782 | PMC |
http://dx.doi.org/10.1016/j.brainresbull.2008.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!