The efficacy of different vaccination schedules was evaluated in 17-day-old Pekin ducks using an experimental inactivated whole virus vaccine based on the H5N9 A/chicken/Italy/22A/98 isolate (H5N9-It) and/or a fowlpox recombinant (vFP-H5) expressing a synthetic HA gene from an Asian H5N1 isolate (A/chicken/Indonesia/7/2003). Full protection against clinical signs and shedding was induced by the different vaccination schemes. However, the broadest antibody response and the lowest antibody increase after challenge were observed in the group of ducks whose immune system was primed with the fowlpox vectored vaccine and boosted with the inactivated vaccine, suggesting that this prime-boost strategy induced optimal immunity against H5N1 and minimal viral replication after challenge in ducks. In addition, this prime-boost vaccination scheme was shown to be immunogenic in 1-day-old ducklings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2008.11.044DOI Listing

Publication Analysis

Top Keywords

prime-boost vaccination
8
pekin ducks
8
asian h5n1
8
vaccination fowlpox
4
fowlpox vector
4
vector inactivated
4
inactivated avian
4
avian influenza
4
vaccine
4
influenza vaccine
4

Similar Publications

Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses.

Vaccines (Basel)

January 2025

Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.

An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).

View Article and Find Full Text PDF

Dengue virus (DENV) remains a significant public health threat in tropical and subtropical regions, with effective antiviral treatments and vaccines still not fully established despite extensive research. A critical aspect of vaccine development for DENV involves selecting proteins from both structural and non-structural regions of the virus to activate humoral and cellular immune responses effectively. In this study, we developed a novel vaccine for dengue virus serotype 2 (DENV2) using a heterologous Prime-Boost strategy that combines an adenoviral vector (Ad) with subunit vaccines.

View Article and Find Full Text PDF

Anti-immune complex antibodies are elicited during repeated immunization with HIV Env immunogens.

Sci Immunol

January 2025

Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.

Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Epitope mapping has shown that early antibody responses are directed to easily accessible nonneutralizing epitopes on Env instead of bnAb epitopes. Autologously neutralizing antibody responses appear upon boosting, once immunodominant epitopes are saturated.

View Article and Find Full Text PDF

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating of gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!