A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Basal ganglia contributions to adaptive navigation. | LitMetric

Basal ganglia contributions to adaptive navigation.

Behav Brain Res

Psychology Department, Box 351525, University of Washington, Seattle, WA 98195-1525, United States.

Published: April 2009

The striatum has long been considered to be selectively important for nondeclarative, procedural types of memory. This stands in contrast with spatial context processing that is typically attributed to hippocampus. Neurophysiological evidence from studies of the neural mechanisms of adaptive navigation reveals that distinct neural systems such as the striatum and hippocampus continuously process task relevant information regardless of the current cognitive strategy. For example, both striatal and hippocampal neural representations reflect spatial location, directional heading, reward, and egocentric movement features of a test situation in an experience-dependent way, and independent of task demands. Thus, continual parallel processing across memory systems may be the norm rather than the exception. It is suggested that neuromodulators, such as dopamine, may serve to differentially regulate learning-induced neural plasticity mechanisms within these memory systems such that the most successful form of neural processing exerts the strongest control over response selection functions. In this way, dopamine may serve to optimize behavioral choices in the face of changing environmental demands during navigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2008.11.014DOI Listing

Publication Analysis

Top Keywords

adaptive navigation
8
memory systems
8
dopamine serve
8
neural
5
basal ganglia
4
ganglia contributions
4
contributions adaptive
4
navigation striatum
4
striatum long
4
long considered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!