A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acceptor products of alternansucrase with gentiobiose. Production of novel oligosaccharides for food and feed and elimination of bitterness. | LitMetric

Acceptor products of alternansucrase with gentiobiose. Production of novel oligosaccharides for food and feed and elimination of bitterness.

Carbohydr Res

Bioproducts and Biocatalysis Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604, USA.

Published: January 2009

In the presence of suitable acceptor molecules, dextransucrase makes a homologous series of oligosaccharides in which the isomers differ by a single glucosyl unit, whereas alternansucrase synthesizes one trisaccharide, two tetrasaccharides, etc. Previously, we showed that alternansucrase only forms certain isomers of DP>4 from maltose in measurable amounts, and that these oligosaccharides belong to the oligoalternan series rather than the oligodextran series. We now demonstrate that the acceptor products from gentiobiose, also formed in good yields (nearly 90% in unoptimized reactions), follow a pattern similar to those formed from maltose. The initial product is a single trisaccharide, alpha-d-Glcp-(1-->6)-beta-d-Glcp-(1-->6)-d-Glc. Two tetrasaccharides were formed in approximately equal quantities: alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->6)-beta-d-Glcp-(1-->6)-d-Glc and alpha-d-Glcp-(1-->6)-alpha-d-Glcp-(1-->6)-beta-d-Glcp-(1-->6)-d-Glc. Just one pentasaccharide was isolated from the reaction mixture, alpha-d-Glcp-(1-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->6)-beta-d-Glcp-(1-->6)-d-Glc. Our hypothesis that the enzyme is incapable of forming two consecutive alpha-(1-->3) linkages, and does not form products with more than two consecutive alpha-(1-->6) linkages, apparently applies to other acceptors as well as to maltose. The glucosylation of gentiobiose reduces or eliminates its bitter taste.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2008.10.017DOI Listing

Publication Analysis

Top Keywords

acceptor products
8
products alternansucrase
4
alternansucrase gentiobiose
4
gentiobiose production
4
production novel
4
novel oligosaccharides
4
oligosaccharides food
4
food feed
4
feed elimination
4
elimination bitterness
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!