Background: Cellular RNA polymerases are highly conserved enzymes that undergo complex conformational changes to coordinate the processing of nucleic acid substrates through the active site. Two domains in particular, the bridge helix and the trigger loop, play a key role in this mechanism by adopting different conformations at various stages of the nucleotide addition cycle. The functional relevance of these structural changes has been difficult to assess from the relatively small number of static crystal structures currently available.
Results: Using a novel robotic approach we characterized the functional properties of 367 site-directed mutants of the Methanocaldococcus jannaschii RNA polymerase A' subunit, revealing a wide spectrum of in vitro phenotypes. We show that a surprisingly large number of single amino acid substitutions in the bridge helix, including a kink-inducing proline substitution, increase the specific activity of RNA polymerase. Other 'superactivating' substitutions are located in the adjacent base helices of the trigger loop.
Conclusion: The results support the hypothesis that the nucleotide addition cycle involves a kinked bridge helix conformation. The active center of RNA polymerase seems to be constrained by a network of functional interactions between the bridge helix and trigger loop that controls fundamental parameters of RNA synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776397 | PMC |
http://dx.doi.org/10.1186/jbiol98 | DOI Listing |
Small
January 2025
Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do, 51543, Republic of Korea.
Since their discovery, titanium-based MXenes (TiCT) have attracted significant attention. Several studies have presented versatile, cost-effective, and scalable approaches for fabricating TiCT-based functional components. However, most previous studies only allowed the realization of 2D patterns or required diverse additives to produce 3D architectures.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center for Biotechnology, Anna University, Chennai 600 025, India. Electronic address:
Alpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
Ribonucleoprotein (RNP)-based CRISPR/Cas9 genome editing holds great potential for the treatment of choroidal neovascularization (CNV), which however, is challenged by the lack of efficient cytosolic protein delivery tools. Herein, reversibly-phosphorylated pro-proteins (P-proteins) with conjugated adenosine triphosphate (ATP) tags are engineered and coupled with a membrane-penetrating, guanidine-enriched, α-helical polypeptide (GP) to mediate robust and universal cytosolic delivery. GP forms salt-stable nanocomplexes (NCs) with P-proteins via electrostatic interaction and salt bridging, and the helix-assisted, strong membrane activities of GP enabled efficient cellular internalization and endolysosomal escape of NCs.
View Article and Find Full Text PDFElife
December 2024
Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
Cerebellar nuclei (CN) neurons serve as the primary output of the cerebellum and originate from the cerebellar primordium at early stages of cerebellar development. These neurons are diverse, integrating information from the cerebellar cortex and relaying it to various brain regions. Employing various methodologies, we have characterized a specific subset of CN neurons that do not originate from the rhombic lip or ventricular zone of the cerebellar primordium.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong Thailand
Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (HO). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!