Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Suspension cell cultures (SCCs) from one of the oldest seed plants, Ginkgo biloba, show unpredictable alterations in the nature of the lignins, such as is the recruitment of sinapyl alcohol for lignin biosynthesis, compared with the woody tissues of the same species, which lack syringyl (S) lignins. These results show that, in this gymnosperm, the genes involved in sinapyl alcohol biosynthesis are latent and that their regulatory regions respond, by initiating gene expression, to the developmental signals and the environmental clues, which condition its in vitro culture. G. biloba SCCs not only synthesize S lignins but also their extracellular proteome contains both class III peroxidases capable of oxidizing sinapyl alcohol and enzymes involved in H2O2 production, observation which suggests that the peroxidase branch for the oxidative coupling of sinapyl alcohol units into lignins is operative. The incomplete knowledge of the G. biloba peroxidase-encoding genes led us to purify, characterize and partially sequence the peroxidase responsible for monolignol oxidation. When the major peroxidase from G. biloba SCCs (GbPrx) was purified to homogeneity, it showed absorption maxima in the visible region at 414 (Soret band), and at 543 and 570 nm, which calls to mind those shown by low-spin ferric peroxidases. However, the results also showed that the paraperoxidase-like character of GbPrx is not an obstacle for oxidizing the three monolignols compared with high-spin ferric peroxidases. Taken together, these results mean that the time at which the evolutionary gain of the segment of the route that leads to the biosynthesis of S lignins took place in seed plants needs to be revised.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1399-3054.2008.01185.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!