Dioxins and other polycyclic aromatic compounds formed during the combustion of waste and fossil fuels represent a risk to human health, as well as to the well being of our environment. Compounds of this nature exert carcinogenic and endocrine-disrupting effects in experimental animals by binding to the orphan aryl hydrocarbon receptor (AhR). Understanding the mechanism of action of these pollutants, as well as the physiological role(s) of the AhR, requires identification of the endogenous ligand(s) of this receptor. We reported earlier that activation of AhR by ultraviolet radiation is mediated by the chromophoric amino acid tryptophan (Trp), and we suggested that a new class of compounds derived from Trp, in particular 6-formylindolo[3,2-b]carbazole (FICZ), acts as natural high affinity ligands for this receptor. Here we describe seven new FICZ-derived indolo[3,2-b]carbazole-6-carboxylic acid metabolites and two sulfoconjugates, and we demonstrate the following. (i) FICZ is formed efficiently by photolysis of Trp upon exposure to visible light. (ii) FICZ is an exceptionally good substrate for cytochromes P450 (CYP) 1A1, 1A2, and 1B1, and its hydroxylated metabolites are remarkably good substrates for the sulfotransferases (SULTs) 1A1, 1A2, 1B1, and 1E1. Finally, (iii) sulfoconjugates of phenolic metabolites of FICZ are present in human urine. Our findings indicate that formylindolo[3,2-b]carbazols are the most potent naturally occurring activators of the AhR signaling pathway and may be the key substrates of the CYP1 and SULT1 families of enzymes. These conclusions contradict the widespread view that xenobiotic compounds are the major AhR ligands and CYP1 substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M808321200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!