Spy1A is a cyclin-like protein required for progression through the G(1)/S phase of the cell cycle. Elevated Spy1A protein levels have been implicated in tumorigenesis and are attributed to overriding the DNA damage response and enhancing cell proliferation. Understanding how Spy1A is produced and degraded is essential in resolving how it contributes to normal and abnormal growth processes. Herein, we demonstrate that Spy1A is degraded in a cell cycle-dependent manner during mitosis via the ubiquitin-proteasome system. We have resolved the E3 ligase and essential phosphorylation sites mediating Spy1A degradation. Furthermore, we have determined that non-degradable forms of Spy1A do not trigger cell cycle arrest but, rather, contribute to uncontrolled cell growth. Further investigation into the regulation of Spy1A may reveal novel strategies for understanding the etiology and progression of specific growth disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M804847200DOI Listing

Publication Analysis

Top Keywords

spy1a
8
cell cycle
8
cell
5
cyclin-dependent kinase
4
kinase activator
4
activator spy1a
4
spy1a targeted
4
targeted degradation
4
degradation ubiquitin
4
ubiquitin ligase
4

Similar Publications

Spy1A is a cyclin-like protein required for progression through the G(1)/S phase of the cell cycle. Elevated Spy1A protein levels have been implicated in tumorigenesis and are attributed to overriding the DNA damage response and enhancing cell proliferation. Understanding how Spy1A is produced and degraded is essential in resolving how it contributes to normal and abnormal growth processes.

View Article and Find Full Text PDF

Spy1A is a unique cell cycle activator known to mediate cell cycle progression and override the DNA damage response. This study focused on determining the role of this protein on postnatal mammary gland morphogenesis and neoplasia. Herein, we show that Spy1A levels are tightly regulated during mammary gland development and that ectopic expression stimulates precocious development and results in disrupted morphology of the gland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!