The gene sequences encoding disaggregatase (Dag), the enzyme responsible for dispersion of cell aggregates of Methanosarcina mazei to single cells, were determined for three strains of M. mazei (S-6(T), LYC and TMA). The dag genes of the three strains were 3234 bp in length and had almost the same sequences with 97% amino acid sequence identities. Dag was predicted to comprise 1077 amino acid residues and to have a molecular mass of 120 kDa containing three repeats of the DNRLRE domain in the C terminus, which is specific to the genus Methanosarcina and may be responsible for structural organization and cell wall function. Recombinant Dag was overexpressed in Escherichia coli and preparations of the expressed protein exhibited enzymatic activity. The RT-PCR analysis showed that dag was transcribed to mRNA in M. mazei LYC and indicated that the gene was expressed in vivo. This is the first time the gene involved in the morphological change of Methanosarcina spp. from aggregate to single cells has been identified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685598 | PMC |
http://dx.doi.org/10.1155/2008/949458 | DOI Listing |
ACS Synth Biol
January 2025
Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
The domesticated silkworm , an essential industrial animal for silk production, has attracted attention as a host for protein production due to its remarkable protein synthesis capability. Here, we applied genetic code expansion (GCE) using a versatile pyrrolysyl-tRNA synthetase (PylRS)/tRNA pair from to ; GCE enables synthetic amino acid incorporation into proteins to give them non-natural functions. Transgenic lines expressing PylRS and its cognate tRNA were generated and cross-mated to obtain their F hybrid.
View Article and Find Full Text PDFMicrolife
October 2024
Institute for General Microbiology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
is a model organism, providing a platform to explore methanoarchaeal regulation mechanisms on the transcriptional and translational level. This study investigates and evaluates various molecular tools to allow inducible gene expression in . (i) The TetR/TetO system was utilized to induce expression of a designed antisense RNA directed against sRNA allowing to increase transcripts of asRNA (500-fold), resulting in a significant decrease of sRNA levels (tetracycline-induced knockdown mutant).
View Article and Find Full Text PDFSci Rep
October 2024
Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, BOKU University, Institute of Bioprocess Science and Engineering, Vienna, Austria.
Protein engineering with non-canonical amino acids (ncAAs) holds great promises for diverse applications, however, there are still limitations in the implementation of this technology at manufacturing scale. The know-how to efficiently produce ncAA-incorporated proteins in a scalable manner is still very limited. In the present study, we incorporated the ncAA N-[(2-azidoethoxy)carbonyl]-L-lysine (Azk) into an antigen binding fragment (Fab) in Escherichia coli.
View Article and Find Full Text PDFACS Bio Med Chem Au
October 2024
Texas A&M Drug Discovery Center and Department of Chemistry, College of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States.
The genetic code expansion technique is a powerful chemical biology tool to install noncanonical amino acids (ncAAs) in proteins. As a key enzyme for this technique, pyrrolysyl-tRNA synthetase (PylRS), coupled with its cognate amber suppressor tRNA, has been engineered for the genetic incorporation of more than 200 ncAAs. Using PylRS clones from different archaeal origins, two ncAAs have also been genetically encoded in one protein.
View Article and Find Full Text PDFNat Commun
October 2024
Institute for General Microbiology, Kiel University, 24118, Kiel, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!