The whole body tension (WBT) method was used to evaluate the hypothesis that long term treatment with NF-kappaB inhibitors improves the total forward pulling tension exerted by the limb musculature of the mdx mouse. Mdx mice exhibited significantly reduced WBT values and more profound weakening during the course of generating multiple forward pulling movements than age-matched nondystrophic mice. Long term treatment with the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) did not significantly reduce nuclear p65 activation in the costal diaphragm, but increased WBT by 12% in mature (12 month) mice. Daily treatment (30 days) of 1 month old mdx mice with the inhibitor ursodeoxycholic acid (UDCA) reduced costal diaphragm nuclear p65 activation by 40% and increased WBT by 21%. These results indicate that treatment with NF-kappaB inhibitors improves WBT in the mdx mouse and further establishes the utility of the WBT procedure in assessing therapeutic efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2008.10.006DOI Listing

Publication Analysis

Top Keywords

mdx mouse
12
treatment nf-kappab
12
body tension
8
long term
8
term treatment
8
nf-kappab inhibitors
8
inhibitors improves
8
forward pulling
8
mdx mice
8
nuclear p65
8

Similar Publications

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.

View Article and Find Full Text PDF

Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.

Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.

View Article and Find Full Text PDF

Bone measurements interact with phenotypic measures in canine Duchenne muscular dystrophy.

Front Vet Sci

January 2025

Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.

Duchenne muscular dystrophy (DMD) is an X-linked muscle disease with weakness, loss of ambulation, and premature death. DMD patients have reduced bone health, including decreased femur length (FL), density, and fractures. The mouse model has paradoxically greater FL, density, and strength, positively correlating with muscle mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!