A whole-genome DNA microarray was constructed to dissect expression profiles of Vibrio parahaemolyticus in response to a sudden temperature downshift from 37 to 10 degrees C. The mRNA level of each gene at each of three time points (20, 40 and 60 min after temperature downshift) was compared with that just before cold treatment. Clustering analysis of time-course data revealed nine gene clusters with different time-dependent expression patterns. Downregulation of metabolism-related genes was obviously dominant over upregulation at all time points. The distinct negative regulation of metabolism-related genes would account for a generally reduced cellular protein pool resulting from the sudden temperature downshift. In contrast, cold shock had a 'neutral and balanced' regulatory action on nonmetabolic cellular pathways, which likely brought about the remodelling of cell envelope structures and transport/binding functions. We identified a 171-bp 5'-untranslated region in the cspA transcript. The cspA gene encoded cold shock protein A (CspA), and CspA was shown to be the major cold shock protein in V. parahaemolyticus. Evident regulatory motifs were conserved within the cspA promoter regions of Escherichia coli and V. parahaemolyticus. These two bacteria likely use the same mechanism to regulate the cold-inducible expression of cspA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6968.2008.01434.x | DOI Listing |
Mater Horiz
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, IIT Kharagpur, Kharagpur 721302, India.
A series of compositions NiInSn ( = 0-1) were synthesized by conventional high-temperature synthesis, and as-synthesized samples were checked by powder X-ray diffraction experiments. NiInSn ( < 0.7) mainly forms the ternary variant of the CoSn-type structure (6/), whereas, = 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Condensed Matter Physics, GdS Optronlab, LUCIA Building, University of Valladolid Paseo de Belén 19 47011 Valladolid Spain.
Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China. Electronic address:
The selective hydrogenation of nitrile compounds represents a pivotal area of research within both industrial and academic catalysis. In this study, we prepared Ni-Cu bimetallic catalysts through a co-deposition-crystallization sequence, aimed at the efficient production of primary and secondary amines. The enhanced selectivity for primary amines is attributed to the downshift of the d-band center of NiCu, which weakens the adsorption of key imine intermediates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!