AI Article Synopsis

  • The murine local lymph node assay (LLNA) is the current standard for predicting contact allergenicity, but there's growing public concern over animal testing in cosmetics.
  • Researchers explored using the chorioallantoic membrane (CAM) of chick eggs, which does not have pain perception, to test known cosmetic allergens with human skin.
  • The study found that the CAM model effectively measured the migration of Langerhans cells, correlating well with traditional LLNA results, suggesting it as a promising, ethical alternative for testing allergic responses in human skin.

Article Abstract

The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0625.2008.00803.xDOI Listing

Publication Analysis

Top Keywords

chorioallantoic membrane
8
cosmetic allergens
8
sentient animals
8
human skin/chick
4
skin/chick chorioallantoic
4
membrane model
4
model accurately
4
accurately predicts
4
predicts potency
4
potency cosmetic
4

Similar Publications

Antiangiogenic potential of extracts and molecular docking study by targeting VEGFR-2 pathway.

Open Med (Wars)

January 2025

Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

Background: Anti-angiogenesis or inhibition of blood vessel formation is the best way to prevent the growth and metastasis of tumors. Natural sources like plants are currently being explored for its antiangiogenic activity as they are factories of various phytochemicals. The goal of the current study is to investigate the antiangiogenic potential of () by using chorioallantoic membrane (CAM) assay and molecular docking.

View Article and Find Full Text PDF

Background And Aim: Fowl adenovirus (FAdV) is the etiological agent of inclusion body hepatitis (IBH) and hepatitis-hydropericardium syndrome (HHS) in poultry. It is also detected in chickens with runting and stunting syndrome (RSS). FAdV has been detected worldwide, and genotypes 8a, 8b, and 11 have been identified in chickens with enteric problems in Brazil.

View Article and Find Full Text PDF

Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).

Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.

View Article and Find Full Text PDF

The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines-HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells.

View Article and Find Full Text PDF

Cutaneous melanoma (CM) represents a severe skin cancer with a rising incidence at present and limited treatment options. 5-Fluorouracil (5-FU) is widely used, including for CM; however, the innate resistance of this cancer to conventional therapy remains problematic. Quercetin (QUE) is a flavonoid that can sensitize cancer cells to antitumor agents such as 5-FU.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!