The natural compounds genistein (G), quercetin (Q), and resveratrol (R) have been reported to each exhibit anti-adipogenic activities in adipocytes and antiproliferative and pro-apoptotic activities in several cell types. We studied the combined effects of G, Q, and R on adipogenesis and apoptosis in primary human adipocytes (HAs) and 3T3-L1 murine adipocyte (MAs). Combined treatment with 6.25 microM G, 12.5 microM Q, and 12.5 microM R during the 14-day differentiation period caused an enhanced inhibition of lipid accumulation in maturing HAs that was greater than the responses to individual compounds and to the calculated additive response. Glycerol 3-phosphate dehydrogenase activity, a marker of late adipocyte differentiation, was decreased markedly in HAs treated with the combination of G+Q+R. In addition, combined treatment with 50 microM G, 100 microM Q, and 100 microM R for 3 days decreased cell viability and induced apoptosis in early- and mid- phase maturing and lipid-filled mature HAs. In contrast, no compound alone induced apoptosis. Oil Red O stain and Hoechst 33342 stain were performed to confirm the effects on lipid accumulation and apoptosis, respectively. We also determined whether MAs responded to the combination treatment similarly to HAs. As in HAs, G+Q+R treatment decreased lipid accumulation in maturing MAs and increased apoptosis in pre- and lipid-filled mature MAs more than the responses to G, Q, and R when used separately. These results show that lower concentrations of combined treatments with several natural compounds may be useful for treatments for obesity through the suppression of adipogenesis and enhanced adipocyte apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jmf.2008.0077DOI Listing

Publication Analysis

Top Keywords

lipid accumulation
12
combined effects
8
genistein quercetin
8
quercetin resveratrol
8
natural compounds
8
combined treatment
8
microm 125
8
125 microm
8
accumulation maturing
8
microm 100
8

Similar Publications

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.

View Article and Find Full Text PDF

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.

View Article and Find Full Text PDF

Seeding Janus Zn-Fe Diatomic Pairs on a Hollow Nanobox for Potent Catalytic Therapy.

Nano Lett

January 2025

Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.

Dual atomic nanozymes (DAzymes) are promising for applications in the field of tumor catalytic therapy. Here, integrating with ultrasmall FeC nanoclusters, asymmetric coordination featuring Janus Zn-Fe dual-atom sites with an ON-Fe-Zn-N moiety embedded in a carbon vacancy-engineered hollow nanobox (Janus ZnFe DAs-FeC) was elaborately developed. Theoretical calculation revealed that the synergistic effects of Zn centers acting as both adsorption and active sites, oxygen-heteroatom doping, carbon vacancy, and FeC nanoclusters jointly downshifted the d-band center of Fe 3d orbitals, optimizing the desorption behaviors of intermediates *OH, thereby significantly promoting catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!