3' terminal nucleotides determine thermodynamic stabilities of mismatches at the ends of RNA helices.

Biochemistry

Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019, USA.

Published: December 2008

The thermodynamic stabilities of consecutive mismatches at the ends of RNA helices are determined by the 3' terminal nucleotides. More than 40 RNA duplexes containing terminal motifs of 3 or more nucleotides were studied by optical melting experiments. Up to three noncanonical pairs of nucleotides at the end of RNA helices provide additional thermodynamic stability. 3' nucleotides contribute more stability than 5' nucleotides, and purines contribute more stability than pyrimidines. The additional stability of a second or third 3' nucleotide stacking on a purine is the same for both dangling ends and consecutive terminal mismatches. Current predictions underestimate RNA duplex stabilities with terminal motifs by 1.4 kcal/mol on average, which is an order of magnitude in a binding constant at 37 degrees C. Accurate thermodynamic parameters for these terminal motifs will contribute to improvements in RNA secondary structure predictions, identification of microRNA targets, and design of siRNA therapeutics with fewer off-target effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi801594kDOI Listing

Publication Analysis

Top Keywords

rna helices
12
terminal motifs
12
terminal nucleotides
8
thermodynamic stabilities
8
mismatches ends
8
ends rna
8
nucleotides rna
8
stability nucleotides
8
contribute stability
8
terminal
6

Similar Publications

Synthetic nucleic acids, also defined as xenobiotic nucleic acids (XNAs), opened an avenue to address the limitations of nucleic acid therapeutics and the development of alternative carriers for genetic information in biotechnological applications. Two related XNA systems of high interest are the α-l-threose nucleic acid (TNA) and (3'-2') phosphonomethyl threosyl nucleic acid (tPhoNA), where TNAs show potential in antisense applications, whereas tPhoNAs are investigated for their predisposition toward orthogonal genetic systems. We present predictions on helical models of TNA and tPhoNA chemistry in homoduplexes and in complex with native ribose chemistries.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

Structural and functional analysis of the Nipah virus polymerase complex.

Cell

January 2025

Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA, USA; Center for Integrated Solutions in Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA. Electronic address:

Nipah virus (NiV) is a bat-borne, zoonotic RNA virus that is highly pathogenic in humans. The NiV polymerase, which mediates viral genome replication and mRNA transcription, is a promising drug target. We determined the cryoelectron microscopy (cryo-EM) structure of the NiV polymerase complex, comprising the large protein (L) and phosphoprotein (P), and performed structural, biophysical, and in-depth functional analyses of the NiV polymerase.

View Article and Find Full Text PDF

CRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Cas12a variant (FnoCas12a ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH- mediated activation of Cas12a.

View Article and Find Full Text PDF

Structural variants of AcrIIC5 inhibit Cas9 via divergent binding interfaces.

Structure

January 2025

Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea. Electronic address:

CRISPR-Cas is a bacterial defense system that employs RNA-guided endonucleases to destroy invading foreign nucleic acids. Bacteriophages produce anti-CRISPR (Acr) proteins to evade CRISPR-Cas defense during the infection. AcrIIC5, a type II-C Cas9 inhibitor, exhibits unusual variations in the local backbone fold between its orthologs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!