Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that recognize glycolipid antigens in the context of the antigen-presenting molecule CD1d. Upon glycolipid antigen stimulation, iNKT cells rapidly produce copious amounts of immunomodulatory cytokines, leading to potent activation of a variety of innate and adaptive immune cells. These immune-potentiating properties of iNKT cells hold great promise for the development of vaccine adjuvants. This review aims to summarize the immunomodulatory activities of iNKT cell ligands and to discuss prospects for developing iNKT cell-based vaccine adjuvants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680388 | PMC |
http://dx.doi.org/10.1586/14760584.7.10.1519 | DOI Listing |
Mol Biotechnol
January 2025
Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.
View Article and Find Full Text PDFMol Biomed
January 2025
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.
View Article and Find Full Text PDFACS Nano
January 2025
National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China.
Cancer vaccines utilizing nanoparticle (NP) structures that integrate antigens and adjuvants to enhance delivery and stimulate immune responses are emerging as a promising avenue in cancer immunotherapy. However, the development of cancer vaccines has been significantly hindered by the low immunogenicity of tumor antigens. To address this challenge, substantial efforts have been made in developing innovative adjuvants to elicit effective immune responses.
View Article and Find Full Text PDFVaccine
January 2025
Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea. Electronic address:
Tuberculosis (TB) remains a significant global health issue due to the limited efficacy of the Bacillus Calmette-Guérin (BCG) vaccine, highlighting the need for the development of an improved TB vaccine. In this study, we created a novel TB subunit vaccine consisting of TB-secreted chorismate mutase (TBCM) (Rv1885c) and a hepatitis B virus (HBV)-derived peptide (Poly6), which elicits Type I interferon responses, both with and without an alum adjuvant. We evaluated the immunogenicity, protective efficacy, and therapeutic efficacy of this vaccine candidate in an in vivo mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!