A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione4pip448b6q9d2h6gevuhq80cvh006rl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Effective binding and sensing of lipopolysaccharide: combining complementary pattern recognition receptors. | LitMetric

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200804168DOI Listing

Publication Analysis

Top Keywords

effective binding
4
binding sensing
4
sensing lipopolysaccharide
4
lipopolysaccharide combining
4
combining complementary
4
complementary pattern
4
pattern recognition
4
recognition receptors
4
effective
1
sensing
1

Similar Publications

Identification of Potential Drug Targets for the Treatment of Severe Burn Wounds from a Multi-Omics Perspective.

J Inflamm Res

December 2024

Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.

Purpose: Severe burns result in significant skin damage, impairing its primary role as an infection barrier and presenting substantial treatment challenges. Despite improvements in the treatment of burn patients due to advancements in materials and techniques, there remains a need for novel therapeutic approaches to enhance burn prognosis further.

Patients And Methods: Several types of genomic methods are used in this study, such as differential gene expression analysis, weighted gene co-expression network analysis (WGCNA), machine learning, and Mendelian randomization (MR), to find genes that are linked to severe burns and create a diagnostic nomogram to see how well these genes can predict severe burns.

View Article and Find Full Text PDF

5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects.

View Article and Find Full Text PDF

Breast cancer (BC) is a malignant tumor, that damages the physical health of female patients. It is crucial to develop new treatment strategies for BC, as this disease significantly affects the quality of life of women in both developing and developed countries, despite the existence of effective treatment options to reduce mortality. Recently, several researchers have been studying circular RNAs (circRNAs) in BC due to their stability and sponge function.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is an aggressive cancer of the bile duct epithelium. Anthocyanins are water-soluble flavonoids that contribute to the color of fruits and pigmented rice. Black rice bran is rich in anthocyanin pigments and exhibits certain health benefits, including anticancer activity; however, the effect of black rice bran-derived anthocyanins (BBR-M-10) on CCA progression remains unclear.

View Article and Find Full Text PDF

Tadalafil Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells-Derived Exosomes in Pulmonary Hypertension by Upregulating miR-29a-3p.

Int J Nanomedicine

December 2024

Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.

Introduction: Pulmonary hypertension (PH) is a progressive and life-threatening condition. Recent research has demonstrated that exosomes derived from mesenchymal stem cells (MSC) exhibit significant therapeutic potential in the treatment of PH. The composition of these exosomes is often substantially influenced by the characteristics of their parental cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!