Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two firing modes of thalamocortical (TC) neurons, tonic and burst firings, are thought to reflect the divergent states of sensory signal transmission from the thalamus to the cortex. However, the behavioral consequences of changes in the thalamic firing between the two modes have not been well demonstrated. Moreover, although the firing modes of TC neurons are known to be affected by corticothalamic inputs via thalamic metabotropic glutamate receptor type 1 (mGluR1)-phospholipase C beta4 (PLCbeta4) pathway, its molecular mechanisms have not been well elucidated. We addressed these questions using PLCbeta4-deficient mice, which show decreased visceral pain responses. We demonstrate that burst and tonic firings of TC neurons are concomitantly regulated by PLCbeta4 pathway. Blocking of this pathway by the mutation simultaneously increases bursting and decreases tonic firing of TC neurons through concurrent upregulation of T- and L-type Ca(2+) currents. The mice with increased bursting and decreased tonic firing of TC neurons showed reduced visceral pain responses. Furthermore, we show that modulation of the Ca(2+) channels or protein kinase C (PKC), a downstream molecule of PLCbeta4, altered the firing modes of TC neurons and pain responses in the predicted ways. Our data demonstrate the molecular mechanism and behavioral consequences of altered firing modes of TC neurons in relaying the visceral pain signals. Our study also highlights the thalamic PLCbeta4-PKC pathway as a "molecular switch" for the firing modes of TC neurons and thus for pain sensory gating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6671622 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3013-08.2008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!