Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alveolar macrophages (AMphi) have been implicated in the polymorphonuclear leukocyte (PMN) recruitment to the lungs during sepsis. Using an in vivo murine model of sepsis (feces in the peritoneum), we show that peritonitis leads to increased activation of AMphi and PMN migration into pulmonary alveoli. To assess cellular mechanisms, an in vitro construct of the pulmonary vascular-interstitial interface (murine AMphi, pulmonary endothelial cells, and PMN) and a chimera approach were used. Using immunologic (Abs) and genetic blockade (CXCR2-deficient AMphi), we show that CXC chemokines in septic plasma are responsible for the activation of AMphi. The activated AMphi can promote PMN transendothelial migration, even against a concentration gradient of septic plasma, by generating platelet-activating factor and H(2)O(2). Platelet-activating factor/H(2)O(2) induce an oxidant stress in the adjacent endothelial cells, an event that appears to be a prerequisite for PMN transendothelial migration, since PMN migration is abrogated across Cu/Zn-superoxide dismutase overexpressing endothelial cells. Using gp91-deficient endothelial cells, we show that NADPH oxidase plays an important role in the AMphi-induced PMN transendothelial migration. Pharmacologic/small interfering RNA blockade of Src kinase inhibits AMphi-induced endothelial NADPH oxidase activation and PMN migration. Collectively, our findings indicate that the PMN transendothelial migration induced by septic AMphi is dependent on the generation of superoxide in endothelial cells via the Src kinase/NADPH oxidase signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.181.12.8735 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!