Signals induced by the TCR and CD28 costimulatory pathway have been shown to lead to the inactivation of the constitutively active enzyme, glycogen synthase kinase-3 (GSK3), which has been implicated in the regulation of IL-2 and T cell proliferation. However, it is unknown whether GSK3 plays a similar role in naive and memory CD4(+) T cell responses. Here we demonstrate a divergence in the dependency on the inactivation of GSK3 in the proliferative responses of human naive and memory CD4(+) T cells. We find that although CD28 costimulation increases the frequency of phospho-GSK3 inactivation in TCR-stimulated naive and memory CD4(+) T cells, memory cells are less reliant on GSK3 inactivation for their proliferative responses. Rather we find that GSK3beta plays a previously unrecognized role in the selective regulation of the IL-10 recall response by human memory CD4(+) T cells. Furthermore, GSK3beta-inactivated memory CD4(+) T cells acquired the capacity to suppress the bystander proliferation of CD4(+) T cells in an IL-10-dependent, cell contact-independent manner. Our findings reveal a dichotomy present in the function of GSK3 in distinct human CD4(+) T cell populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849970PMC
http://dx.doi.org/10.4049/jimmunol.181.12.8363DOI Listing

Publication Analysis

Top Keywords

memory cd4+
20
cd4+ cells
20
cd4+ cell
12
naive memory
12
glycogen synthase
8
synthase kinase-3
8
cd4+
8
human cd4+
8
cell responses
8
proliferative responses
8

Similar Publications

Dengue-virus-induced humoral immunity can increase the risk of severe disease, but the factors influencing this response are poorly understood. Here, we investigate the contribution of CD4 T cells to B cell responses in human dengue infection. We identify a dominant peripheral PD-1 T cell subset that accumulates in severe patients and could induce B cell differentiation via interleukin-21 (IL-21)-related pathway.

View Article and Find Full Text PDF

The CD2-depleting drug alefacept (LFA3-Ig) preserved beta cell function in new-onset type 1 diabetes (T1D) patients. The most promising biomarkers of response were late expansion of exhausted CD8 T cells and rare baseline inflammatory islet-reactive CD4 T cells, neither of which can be used to measure responses to drug in the weeks after treatment. Thus, we investigated whether early changes in T cell immunophenotypes could serve as biomarkers of drug activity.

View Article and Find Full Text PDF

General and individualized changes in T cell immunity during aging.

J Immunol

February 2025

Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, United States.

Functional alterations with age are observed in all human systems, but the aging of the adaptive immune system displays both general changes affecting all individuals, and idiosyncratic changes that are unique to individuals. In the T cell compartment, general aging manifests in three ways: (1) the reduction of naïve T cells, (2) the accumulation of differentiated memory T cells, and (3) a reduced overall T cell receptor (TCR) repertoire. Idiosyncratic impacts of aging, such as changes in the TCR repertoires of altered memory and naïve T cells are shaped by each person's life exposures.

View Article and Find Full Text PDF

Agonistic anti-CD40 with anti-PD-1 can elicit objective responses in a small number of patients with pancreatic ductal adenocarcinoma (PDA). Better understanding of their individual effects on the PDA tumor microenvironment will help inform new strategies to further improve outcomes. Herein, we map tumor-specific CD8+ T-cell differentiation following agonistic anti-CD40 and/or anti-PDL1 in PDA.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate AMD1 cardiotoxicity function for Maduramicin (Mad).

Methods: SD rats were divided into control (Control) group and Mad treatment (3.5 mg/kg) group (Mad).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!