Our previous study showed that insulin restored impaired function and expression of P-glycoprotein in diabetic blood-brain barrier, and further study showed that insulin up-regulated P-glycoprotein expression and function in normal blood-brain barrier, so insulin might be one of the factors that regulated the function and expression of P-glycoprotein in blood-brain barrier of diabetes. In this study, the intracellular pathways that insulin regulated the P-glycoprotein were investigated using primarily cultured rat brain microvessel endothelial cells model. The rat brain microvessel endothelial cells were incubated in normal culture medium containing 50 mU/l insulin and different concentrations of inhibitors for 72 h. The P-glycoprotein function and expression in the rat brain microvessel endothelial cells were assessed using the uptake of P-glycoprotein substrate rhodamine 123 and western blot assay, respectively. It was found that treatment of 50 mU/l insulin significantly increased P-glycoprotein function and expression in rat brain microvessel endothelial cells. This induced effect was blocked by insulin receptor antibody, insulin receptor tyrosine kinase inhibitor I-OMe-AG538, PKC inhibitor chelerythrine and NF-kappaB inhibitor pyrrolidine dithiocarbamate ammonium (PDTC). But this induced effect was not inhibited by phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002. These results indicated that insulin regulated P-glycoprotein function and expression through signal transduction pathways involving activation of PKC/NF-kappaB but not PI3K/Akt pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2008.11.026 | DOI Listing |
Neurobiol Pain
December 2024
Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States.
Chronic headaches and pain are prevalent in those who are exposure to blast events, yet there is a gap in fundamental data that identifies the pathological mechanism for the chronification of pain. Blast-related post-traumatic headaches (PTH) are understudied and chronic pain behaviors in preclinical models can be vital to help elucidate PTH mechanisms. The descending pain modulatory system controls pain perception and involves specific brain regions such as the cortex, thalamus, pons, and medulla.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China.
Background: Lipids are vital biomolecules involved in the formation of various biofilms. Seizures can cause changes in lipid metabolism in the brain. In-depth studies at multiple levels are urgently needed to elucidate lipid composition, distribution, and metabolic pathways in the brain after seizure.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
Objectives: This study aimed to investigate the potential effects of different doses of essential oil (Lavender EO) administered by inhalation on sleep latency and neuromodulators regulating the sleep/wake cycle in rats with total sleep deprivation (TSD).
Materials And Methods: Forty-eight male Sprague-Dawley rats were divided into five groups: Control, Alprazolam (ALP, 0.25 mg/kg given intraperitoneally), L1 (Lavender EO, 0.
Iran J Basic Med Sci
January 2025
Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: Traumatic brain injury (TBI) is a significant cause of mortality and disability worldwide. TBI has been associated with factors such as oxidative stress, neuroinflammation, and apoptosis, which are believed to be mediated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Two NMDA receptor antagonists, ketamine and memantine, have shown potential in mitigating the pathophysiological effects of TBI.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: Trans-sodium crocetinate (TSC) is one of the crocetin derivations that is more soluble and stable than crocetin and its cis form. It easily crosses the blood-brain barrier. TSC has neuroprotective effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!