Crude rat liver extract showed AMP-AMP phosphotransferase activity which, on purification, was ascribed to a novel interaction between adenylate kinase, also known as myokinase (EC 2.7.4.3), and adenosine kinase (EC 2.7.1.20). The activity was duplicated using the same enzymes purified from recombinant sources. The reaction requires physical contact between myokinase and adenosine kinase, and the net reaction is aided by the presence of adenosine deaminase (EC 3.5.4.4), which fills the gap in the energy balance of the phosphoryl transfer and shifts the equilibrium towards ADP and inosine synthesis. The proposed mechanism involves the association of adenosine kinase and myokinase through non-covalent, transient interactions that induce slight conformational changes in the active site of myokinase, bringing two already bound molecules of AMP together for phosphoryl transfer to form ADP. The proposed mechanism suggests a physiological role for the enzymes and for the AMP-AMP phosphotransferase reaction under conditions of extreme energy drain (such as hypoxia or temporary anoxia, as in cancer tissues) when the enzymes cannot display their conventional activity because of substrate deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2008.06779.x | DOI Listing |
Methods Mol Biol
January 2025
Quantum-Si, Guilford, CT, USA.
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China. Electronic address:
Mycoplasma pneumoniae (M. pneumoniae) is one of the major pathogens causing community-acquired pneumonia (CAP), and its pathogenic mechanism is not fully understood. Inflammatory response is the most basic and common pathological phenomenon of CAP, but the specific mechanism needs further investigation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
Protein phosphorylation plays a crucial role in regulating a wide range of biological processes, and its dysregulation is strongly linked to various diseases. While many phosphorylation sites have been identified so far, their functionality and regulatory effects are largely unknown. Here, a deep learning model MMFuncPhos, based on a multi-modal deep learning framework, is developed to predict functional phosphorylation sites.
View Article and Find Full Text PDFUnlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia.
Fertility disorders are a worldwide problem affecting 8-12% of the population, with the male factor substantially contributing to about 40-50% of all infertility cases. Mitochondria, crucial organelles for cellular viability, play a pivotal role in the processes of spermatogenesis and significantly affect sperm quality and their fertilizing ability. Mitochondrial oxidative phosphorylation (OXPHOS) dysfunction, reduced energy supply for sperm, reduced endogenous coenzyme Q (CoQ) levels, and oxidative stress are among the main factors that contribute to male infertility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!