Micelles from amphiphilic star-block copolymers, having a hydrophobic hyperbranched core and amphiphilic fluoropolymer arms, were constructed as drug delivery agent assemblies. A series of polymer structures was constructed from consecutive copolymerizations of 4-chloromethylstyrene with dodecyl acrylate and then 1,1,1- trifluoroethyl methacrylate with tert-butyl acrylate, followed by acidolysis to release the hydrophilic acrylic acid residues. These structures were labeled with cascade blue as a fluorescence reporter. The series of materials differed primarily in the ratio of 1,1,1-trifluoroethyl methacrylate to acrylic acid units, to give differences in fluorine loading and hydrophobicity/hydrophilicity balance. Doxorubicin (DOX) was used as a therapeutic to study the loading, release, and cytotoxicity of these micellar constructs on an U87-MG-EGFRvIII-CBR cell line. The micelles, with TEM-measured diameters ranging 5-9 nm and DLS-measured hydrodynamic diameters 20-30 nm, had loading capacities of ca. 4 wt % of DOX. The DOX-loaded micelles exhibited potent cytotoxicity with cell viabilities of 60-25% at 1.0 microg/mL effective DOX concentrations, depending upon the polymer composition, as determined by MTT assays. These cell viability values are comparable to that of free DOX, suggesting an effective release of the cargo and delivery to the cell nuclei, which was further confirmed by fluorescence microscopy of the cells. 19F-NMR spectroscopy indicated a partial degradation of the surface-available trifluoroethyl ester linkages of the micelles, which may have accelerated the release of DOX. 19F-NMR spectroscopy was also employed to confirm and to quantify the cell uptake of the micelles. These dual fluorescent- and 19F-labeled and chemically functional micelles may be used potentially in a variety of applications, such as cell labeling, imaging, and therapeutic delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703787 | PMC |
http://dx.doi.org/10.1021/bc800396h | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran. Electronic address:
Acrylamide has high hydrophilic properties due to the presence of hydrophilic amide functional groups and is frequently used to synthesize superabsorbents. However, the toxic and carcinogenic properties of acrylamide have caused environmental concerns. The main goal of this paper is the synthesis of superabsorbent with high water absorption from biodegradable and biocompatible cellulose polymer containing amide groups in the backbone of it instead of grafting harmful acrylamide monomers to cellulose.
View Article and Find Full Text PDFSci Technol Adv Mater
November 2024
Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Poly(-lysine)--poly(ethylene glycol)--poly(-lysine) (PLys--PEG--PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (Nano or Nano) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
Cold isostatic pressing, gel casting, and protein coagulation are the most common techniques to produce green bodies prior to computer numerical control (CNC)-based machining for the near-net-scale shaping of ceramics. These methods typically involve various additives and entail several steps to create a green body that is capable of withstanding machining forces. Here, utilizing a single additive, we first introduced a facile benchtop method to generate self-standing, malleable doughs of alumina in under 2 min.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry, University of Hannam, Daejeon 34430, Republic of Korea.
The chemical mechanical polishing/planarization (CMP) is essential for achieving the desired surface quality and planarity required for subsequent layers and processing steps. However, the aggregation of slurry particles caused by abrasive materials can lead to scratches, defects, increased surface roughness, degradation the quality and durability of the finished surface after milling processes during the CMP process. In this study, ceria slurry was prepared using polymer dispersant with zinc salt of ethylene acrylic acid (EAA) copolymer at different contents of 5, 6, and 7 wt% (denoted as D5, D6, and D7) to minimize particle aggregation commonly observed in CMP slurries.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, University of Patras, 26500 Patras, Greece.
In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!