Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: It is well established that diabetes impairs vascular endothelial function. However, the impact of impaired endothelial function on thermal conductivity of the skin, especially in relation to a constant versus a sudden heat stress, has not been established. Further, there is some evidence that aging reduces skin dermal thickness and subcutaneous fat thickness. Since these are important determinates of heat dissipation by the skin, these parameters also need to be examined in people with diabetes.
Methods: Ninety subjects (30 younger individuals, 30 patients with diabetes, and 30 patients age-matched to the diabetes subjects) participated in two series of experiments to determine (1) the thickness of the subcutaneous fat layer and skin thickness and the skin response to a sudden heat stress and (2) the response to a continuous heat stress on the lower back. Skin thickness and subcutaneous fat thickness were assessed by ultrasound, and skin blood flow was examined by infrared laser Doppler flow meter.
Results: People with diabetes had significantly less resting blood flow, blood flow in response to a single or continuous heat load, less subcutaneous fat, and thinner skin than either age-matched controls or younger people (P < 0.05). Subjects with diabetes also had the lowest concentration of red blood cells in their skin, implying a reduction in the number of capillaries in the skin.
Conclusions: Thinning of the skin and probably a reduction in capillaries in the dermal layer contribute to a reduction in the blood flow response to heat. People with diabetes, in particular, have reduced skin heat dissipation because of less resting blood flow and thinner skin than that seen in age-matched controls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dia.2008.0009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!