Au-plasmon tuning has been accomplished by controlling the refractive index (n) of the embedding film matrix. The refractive index of the film matrices were controlled by changing the molar ratios of low (SiO2) and high index (ZrO2) components following sol-gel reactions. Thus, Au nanoparticles doped films were prepared from SiO2-ZrO2 inorganic-organic hybrid sols of variable molar ratios containing HAuCl4 following the dip-coating method. The film samples deposited on glass substrates were obtained after drying, UV-treatment, and subsequent heat-treatment at 500 degrees C in air. The nominal mol ratios of SiO2:ZrO2 were 1:0, 1:1, 1:2.3, and 1:4. 3 equivalent mol% Au-97% total oxide (SiO2 + ZrO2) was maintained in the final heat-treated films. FTIR studies confirmed good homogeneity of Si-Zr network in the Zr-containing films. The UV-treatment has been introduced to facilitate the decomposition of HAuCl4 in the hybrid matrix prior to the heat-treatment step. The main Au-plasmon peak, in the case of a SiO2 host (SiO2:ZrO2 = 1:0, n = 1.410), observed at about 546 nm, gradually red-shifted to 592 nm upon increasing the ZrO2 content (SiO2:ZrO2 = 1:4, n = 1.847). Transmission electron microscopy of the final heat-treated (500 degrees C) films showed existence of plate-like (triangular and hexagonal) Au nanoparticles (25-50 nm) along with relatively smaller nanoparticles of about 10 nm in size. X-ray diffraction patterns reveal that the Au nanoparticles have a (111) orientation.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!