A surface acoustic wave (SAW) device consisting of 1-6 microm-thick ZnO thin films deposited on Si wafer was designed, fabricated, and characterized in this study. Photolithographic protocols for interdigitated transducers (IDTs) and surface modification using fluoroalkylsilane are employed with the aim of droplet-based microfluidic actuations in bio-microsystems. A ZnO thin film was grown on a 4' silicon wafer with c-axis orientation, an average roughness of 11.6 nm, and a small grain size of 20 nm. It was found that the resonant frequencies (Rayleigh and Sezawa modes) of SAW devices move to a lower frequency range as the thickness of the ZnO thin films increases. Through the silane surface modification, a hydrophobic surface with a contact angle of 114 degrees was obtained. Finally, liquid streaming by acoustic wave was demonstrated by observing the actuation of SiO2 microparticles in a microfluidic drop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2008.ic44 | DOI Listing |
Dalton Trans
January 2025
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam.
Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.
View Article and Find Full Text PDFACS Appl Electron Mater
January 2025
Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K.
Nanoscale semiconductors offer significant advantages over their bulk semiconductor equivalents for electronic devices as a result of the ability to geometrically tune electronic properties, the absence of internal grain boundaries, and the very low absolute number of defects that are present in such small volumes of material. However, these advantages can only be realized if reliable contacts can be made to the nanoscale semiconductor using a scalable, low-cost process. Although there are many low-cost "bottom-up" techniques for directly growing nanomaterials, the fabrication of contacts at the nanoscale usually requires expensive and slow techniques like e-beam lithography that are also hard to scale to a level of throughput that is required for commercialization.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, South Korea.
Zinc oxide (ZnO) thin-film transistors (TFTs) can be promising for applications in wide-band light absorption. However, they suffer from retarded photoresponse characteristics due to atomic defects and the resulting localized electronic states. To investigate the photoinduced localized states of the ZnO TFTs, here, we combine X-ray photoelectron spectroscopy, atomic force microscopy, and density functional theory (DFT) calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Riphah International University, Campus Lahore, Lahore 54000, Pakistan.
To advance off-grid energy solutions, developing flexible photobatteries capable of direct light charging is essential. This study presents an innovative photobattery architecture that incorporates zinc oxide (ZnO) as an electron-transporting and hole-blocking layer, combined with a hybrid methylammonium tin iodide composite with poly-triarylamine (MASnI/PTAA) for light absorption and hole transport. PTAA facilitates efficient hole transport to the anode, thereby enhancing charge separation and reducing recombination losses.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China.
The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices' photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!