The present study examined brain and liver derived proteasome complexes to elucidate if there is a differential susceptibility in proteasome complexes from these tissues to undergo inactivation following exposure to oxidative stressors. It then examined the influence of ageing and dietary restriction (DR) on the observed proteasome inactivation. Studies used a filtration based methodology that allows for enrichment of proteasome complexes with less tissue than is required for traditional chromatography procedures. The results indicate that the brain has much lower levels of overall proteasome activity and exhibits increased sensitivity to hydrogen peroxide mediated inactivation as compared to proteasome complexes derived from the liver. Interestingly, the brain proteasome complexes did not appear to have increased susceptibility to 4-hydroxynonenal (HNE)-induced inactivation. Surprisingly, ageing and DR induced minimal effects on oxidative stress mediated proteasome inhibition. These results indicate that the brain not only has lower levels of proteasome activity compared to the liver, but is also more susceptible to inactivation following exposure to some (but certainly not all) oxidative stressors. This data also suggest that ageing and DR may not significantly modulate the resistance of the proteasome to inactivation in some experimental settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735019 | PMC |
http://dx.doi.org/10.1080/10715760802534812 | DOI Listing |
Eur J Pharmacol
January 2025
Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Calcium/calmodulin dependent protein kinase II inhibitor 1 (Camk2n1) is closely associated with a peak logarithm of odds score in quantitative trait loci for systolic blood pressure. Increased Camk2n1 mRNA expression has been specifically observed in the kidneys of hypertension mouse models. However, the precise role of Camk2n1 in the kidney remains unclear.
View Article and Find Full Text PDFProtein Expr Purif
January 2025
Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA. Electronic address:
E6AP/UBE3A is the founding member of the HECT (Homologous to the E6-AP Carboxyl Terminus) ubiquitin E3 ligase family, which add ubiquitin post-translationally to protein substrates. E6AP has been structurally defined in complex with human papillomavirus (HPV) oncoprotein E6 and its gain-of-function substrate tumor suppressor p53; however, there is currently no report of E6AP being expressed and purified from mammalian cells, as studies to date have isolated E6AP from E. coli or insect cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.
View Article and Find Full Text PDFSci Adv
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
The proteasome degrades most superfluous and damaged proteins, and its decline is associated with many diseases. As the proteolytic unit, the 20 proteasome is assembled from 28 subunits assisted by chaperones PAC1/2/3/4 and POMP; then, it undergoes the maturation process, in which the proteolytic sites are activated and the assembly chaperones are cleared. However, mechanisms governing the maturation remain elusive.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
2nd Ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China. Electronic address:
Itaconate is a small-molecule metabolite generated by the enzyme aconitate decarboxylase 1 (ACOD1), which is upregulated during inflammation. Traditionally, itaconate has been recognized for its anti-inflammatory properties; however, this study reveals a pro-inflammatory mechanism of itaconate in macrophages. We demonstrate that itaconate promotes the proteasomal degradation of glyoxalase 1 (GLO1) via Cys139.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!