Caffeine, a nonspecific adenosine receptor (AR) antagonist is widely used to treat apnea of prematurity. Because adenosine modulates multiple biologic processes including inflammation, we hypothesized that AR blockade by caffeine would increase cytokine release from neonatal monocytes. Using cord blood monocytes (CBM), we investigated 1) the changes in AR mRNA profile by real time quantitative reverse-transcription polymerase-chain-reaction (qRT-PCR) and protein expression (western blot) after in vitro culture, caffeine or lipopolysaccharide (LPS) exposure, and 2) the modulation of cytokine release and cyclic adenosine monophosphate (cAMP) production by enzyme-linked immunosorbent assay (ELISA) induced by caffeine and specific AR antagonists: DPCPX(A1R), ZM241385(A2aR), MRS1754(A2bR), and MRS1220(A3R). After 48 h in culture, A2aR and A2bR gene expression increased 1.9 (p = 0.04) and 2.5-fold (p = 0.003), respectively. A1R protein expression directly correlated with increasing LPS concentrations (p = 0.01), with minimal expression preexposure. Only caffeine (50 microM) and DPCPX (10 nM) decreased tumor necrosis factor-alpha (TNF-alpha) release from LPS activated-CBM by 20 and 25% (p = 0.01) and TNF-alpha gene expression by 30 and 50%, respectively, in conjunction with a > or =2-fold increase in cAMP (p < 0.05). AR blockade did not modulate other measured cytokines. The induction of A1R after LPS exposure suggests an important role of this receptor in the control of inflammation in neonates. Our findings also suggest that caffeine, via A1R blockade, increases cAMP production and inhibits pretranscriptional TNF-alpha production by CBM.

Download full-text PDF

Source
http://dx.doi.org/10.1203/PDR.0b013e31818d66b1DOI Listing

Publication Analysis

Top Keywords

tnf-alpha production
8
cord blood
8
blood monocytes
8
cytokine release
8
protein expression
8
lps exposure
8
camp production
8
gene expression
8
caffeine
7
expression
5

Similar Publications

Rheumatoid arthritis is an autoimmune disorder affecting multiple joints and requires lifelong treatment. Present study was designed to formulate Esculin-loaded chitosan nanoparticles (ENPs) and evaluation of its anti-inflammatory and anti-arthritic action. The acute toxicity study of ENPs was also performed.

View Article and Find Full Text PDF

Background: Nonalcoholic fatty liver disease (NAFLD) has developed as a leading public wellness challenge as a result of changes in dietary patterns. Unfortunately, there is still a lack of effective pharmacotherapy methods for NAFLD. Wang's empirical formula (WSF) has demonstrated considerable clinical efficacy in treating metabolic disorders for years.

View Article and Find Full Text PDF

Effect of Mechanical Force Stress on the Inflammatory Response in Human Periodontal Ligament Cells.

Int Dent J

December 2024

Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand.

Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed.

View Article and Find Full Text PDF

Polymer-siRNA nanovectors for treating lung inflammation.

J Control Release

December 2024

Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. Electronic address:

Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract is susceptible to damage under high altitude hypoxic conditions, leading to gastrointestinal discomfort and intestinal barrier injury. Sodium butyrate, a short-chain fatty acid present as a metabolite in the gut, has emerged as a promising therapeutic agent due to its ability to act as an immunomodulatory agent and restore intestinal barrier integrity. This study aimed to explore the mechanism by which sodium butyrate exhibits anti inflammatory effect on intestinal epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!