During haem and chlorophyll biosynthesis, flavin-dependent protoporphyrinogen IX oxidase catalyses the six-electron oxidation of protoporphyrinogen IX to form protoporphyrin IX. In the following step, iron is inserted into protoporphyrin IX by ferrochelatase. Based on the solved crystal structures of these enzymes, an in silico model for a complex between these two enzymes was proposed to protect the highly photoreactive intermediate protoporphyrin IX. The existence of this complex was verified by two independent techniques. First, co-immunoprecipitation experiments using antibodies directed against recombinantly produced and purified Thermosynechococcus elongatus protoporphyrinogen IX oxidase and ferrochelatase demonstrated their physical interaction. Secondly, protein complex formation was visualized by in vivo immunogold labelling and electron microscopy with T. elongatus cells. Finally, oxygen-dependent coproporphyrinogen III oxidase, which catalyses the formation of protoporphyrinogen IX, was not found to be part of this complex when analysed with the same methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.2008/018705-0DOI Listing

Publication Analysis

Top Keywords

protoporphyrinogen oxidase
12
complex formation
8
formation protoporphyrinogen
8
oxidase ferrochelatase
8
thermosynechococcus elongatus
8
oxidase catalyses
8
complex
5
protoporphyrinogen
5
oxidase
4
ferrochelatase haem
4

Similar Publications

Epigenetic control of tetrapyrrole biosynthesis by m4C DNA methylation in a cyanobacterium.

DNA Res

December 2024

University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany.

Epigenetic DNA modifications are pivotal in eukaryotic gene expression, but their regulatory significance in bacteria is less understood. In Synechocystis 6803, the DNA methyltransferase M.Ssp6803II modifies the first cytosine in the GGCC motif, forming N4-methylcytosine (GGm4CC).

View Article and Find Full Text PDF

Transgenic soybean, cotton, and maize tolerant to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides have been developed by introduction of a bacterial-derived PPO targeted into the chloroplast. PPO is a membrane-associated protein with an intrinsic tendency for aggregation, making expression, purification, and formulation at high concentrations difficult. In this study, transgenic PPO expressed in three crops was demonstrated to exhibit up to a 13 amino acid sequence difference in the N-terminus due to differential processing of the chloroplast transit peptide (CTP).

View Article and Find Full Text PDF

Background: Raphanus raphanistrum causes $40 million total revenue losses annually in Western Australia partly due to its historically-documented ability to evolve herbicide resistance to multiple modes of action. In this study, 376 field-sampled populations of R. raphanistrum were tested for resistance to 21 herbicides applied at the recommended label rate.

View Article and Find Full Text PDF

Amphiphilic Cationic Carbon Dots for Efficient Delivery of Light-Dependent Herbicide.

Adv Sci (Weinh)

October 2024

College of Plant Protection, China Agricultural University, NO. 2 Yuanmingyuan West Road, Beijing, 100193, China.

The inefficient delivery of herbicides causes unpleasant side effects on the ecological environment. Protoporphyrinogen oxidase (PPO)-inhibiting herbicides rely on the presence of external light to exert the activities and thus their performance in the field is extremely susceptible to the light environment. Here, taking acifluorfen (ACI) as a model PPO-inhibiting herbicide to enhance efficacy by boosting the utilization rate of sunlight, amphiphilic cationic CDs (CPC-CDs) from cetylpyridinium chloride (CPC) as a precursor, is first prepared as a supplementary light source generator, and subsequently co-assembled with ACI through non-covalent bond interactions to obtain the stable fluorescent nanoparticles (ACI@CPC-CDs).

View Article and Find Full Text PDF

Design, Synthesis and Proteomics-Based Analysis of Novel Triazinone Derivatives Containing Amide Structures as Safer Protoporphyrinogen IX Oxidase Inhibitors.

J Agric Food Chem

August 2024

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

Resistant weeds severely threaten crop yields as they compete with crops for resources required for survival. Trifludimoxazin, a protoporphyrinogen IX oxidase (PPO) inhibitor, can effectively control resistant weeds. However, its crop safety record is unsatisfactory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!