The minus strand and ambisense segmented RNA viruses include multiple important human pathogens and are divided into three families, the Orthomyxoviridae, the Bunyaviridae, and the Arenaviridae. These viruses all initiate viral transcription through the process of "cap-snatching," which involves the acquisition of capped 5' oligonucleotides from cellular mRNA. Hantaviruses are emerging pathogenic viruses of the Bunyaviridae family that replicate in the cytoplasm of infected cells. Cellular mRNAs can be actively translated in polysomes or physically sequestered in cytoplasmic processing bodies (P bodies) where they are degraded or stored for subsequent translation. Here we show that the hantavirus nucleocapsid protein binds with high affinity to the 5' cap of cellular mRNAs, protecting the 5' cap from degradation. We also show that the hantavirus nucleocapsid protein accumulates in P bodies, where it sequesters protected 5' caps. P bodies then serve as a pool of primers during the initiation of viral mRNA synthesis by the viral polymerase. We propose that minus strand segmented viruses replicating in the cytoplasm have co-opted the normal degradation machinery of P bodies for storage of cellular caps. Our data also indicate that modification of the cap-snatching model is warranted to include a role for the nucleocapsid protein in cap acquisition and storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614755PMC
http://dx.doi.org/10.1073/pnas.0807211105DOI Listing

Publication Analysis

Top Keywords

nucleocapsid protein
12
storage cellular
8
cellular mrna
8
caps bodies
8
minus strand
8
cellular mrnas
8
hantavirus nucleocapsid
8
bodies
6
mrna caps
4
viral
4

Similar Publications

The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood.

View Article and Find Full Text PDF

Acute SARS-CoV-2 infections are not always diagnosed; hence an unknown proportion of all infections are not documented. SARS-CoV-2 can induce spike and nucleocapsid protein specific IgG antibodies, which can be detected in seroprevalence studies to identify a previous infection. However, with the introduction of vaccines containing the spike protein it is no longer possible to use spike-IgG as a marker of infection.

View Article and Find Full Text PDF

SARS-CoV-2 Is an Electricity-Driven Virus.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

One of the most important and challenging biological events of recent times has been the pandemic caused by SARS-CoV-2. Since the underpinning argument behind this book is the ubiquity of electrical forces driving multiple disparate biological events, consideration of key aspects of the SARS-CoV-2 structural proteins is included. Electrical regulation of spike protein, nucleocapsid protein, membrane protein, and envelope protein is included, with several of their activities regulated by LLPS and the multivalent and π-cation and π-π electrical forces that drive phase separation.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!