Human bone stromal cells, after three-dimensional coculture with human prostate cancer (PCa) cells in vitro, underwent permanent cytogenetic and gene expression changes with reactive oxygen species serving as mediators. The evolved stromal cells are highly inductive of human PCa growth in mice, and expressed increased levels of extracellular matrix (versican and tenascin) and chemokine (BDFN, CCL5, CXCL5, and CXCL16) genes. These genes were validated in clinical tissue and/or serum specimens and could be the predictors for invasive and bone metastatic PCa. These results, combined with our previous observations, support the concept of permanent genetic and behavioral changes of PCa epithelial cells after being either cocultured with prostate or bone stromal cells as three-dimensional prostate organoids or grown as tumor xenografts in mice. These observations collectively suggest coevolution of cancer and stromal cells occurred under three-dimensional growth condition, which ultimately accelerates cancer growth and metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105756PMC
http://dx.doi.org/10.1158/0008-5472.CAN-08-2492DOI Listing

Publication Analysis

Top Keywords

stromal cells
16
prostate cancer
8
three-dimensional coculture
8
cancer growth
8
growth metastasis
8
bone stromal
8
cells three-dimensional
8
cells
6
cancer
5
coevolution prostate
4

Similar Publications

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids.

Stem Cells Transl Med

December 2024

Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.

Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.

View Article and Find Full Text PDF

Pan-cancer analysis shows that BCAP31 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types.

Front Immunol

December 2024

Department of Otolaryngology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.

Background: B-cell receptor-associated protein 31 (BCAP31) is a widely expressed transmembrane protein primarily located in the endoplasmic reticulum (ER), including the ER-mitochondria associated membranes. Emerging evidence suggests that BCAP31 may play a role in cancer development and progression, although its specific effects across different cancer types remain incompletely understood.

Methods: The raw data on BCAP31 expression in tumor and adjacent non-tumor (paracancerous) samples were obtained from the Broad Institute Cancer Cell Line Encyclopedia (CCLE) and UCSC databases.

View Article and Find Full Text PDF

Objective: Deep endometriosis is now referred to as adenomyosis externa, whereas adenomyosis is once known as endometriosis interna. Lysine-specific histone demethylase 1A (KDM1A, commonly LSD1) is a lysine demethylase that targets histone and non-histone proteins. This study aimed to assess how KDM1A affects the migration, invasion, and proliferation of adenomyosis-derived endometrial stromal cells (ESCs).

View Article and Find Full Text PDF

Background: Treatment of peripheral nerve defects is a major concern in regenerative medicine. This study therefore aimed to explore the efficacy of a neural graft constructed using adipose mesenchymal stem cells (ADSC), acellular microtissues (MTs), and chitosan in the treatment of peripheral nerve defects.

Methods: Stem cell therapy with acellular MTs provided a suitable microenvironment for axonal regeneration, and compensated for the lack of repair cells in the neural ducts of male 8-week-old Sprague Dawley rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!