Myc proteins have long been modeled to operate strictly as classic gene-specific transcription factors; however, we find that N-Myc has a robust role in the human genome in regulating global cellular euchromatin, including that of intergenic regions. Strikingly, 90% to 95% of the total genomic euchromatic marks histone H3 acetylated at lysine 9 and methylated at lysine 4 is N-Myc-dependent. However, Myc regulation of transcription, even of genes it directly binds and at which it is required for the maintenance of active chromatin, is generally weak. Thus, Myc has a much more potent ability to regulate large domains of euchromatin than to influence the transcription of individual genes. Overall, Myc regulation of chromatin in the human genome includes both specific genes, but also expansive genomic domains that invoke functions independent of a classic transcription factor. These findings support a new dual model for Myc chromatin function with important implications for the role of Myc in cancer and stem cell biology, including that of induced pluripotent stem cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637654PMC
http://dx.doi.org/10.1158/0008-5472.CAN-08-1961DOI Listing

Publication Analysis

Top Keywords

human genome
12
transcription factor
8
myc regulation
8
myc
6
transcription
5
n-myc regulates
4
regulates widespread
4
widespread euchromatic
4
euchromatic program
4
program human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!